Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2025
Saif, HM, Ferrández-Gómez B, Alves VD, Huertas RM, Alemany-Molina G, Viegas A, Morallón E, Cazorla-Amorós D, Crespo JG, Pawlowski S.  2025.  Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis. Desalination. 602:118638. AbstractWebsite

Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area ( 2800 m2/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUAF) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.

2024
Randazzo, S, Vicari F, López J, Salem M, Lo Brutto R, Azzouz S, Chamam S, Cataldo S, Muratore N, Fernández de Labastida M, Vallès V, Pettignano A, D’Alì Staiti G, Pawlowski S, Hannachi A, Cortina JL, Cipollina A.  2024.  Unlocking hidden mineral resources: Characterization and potential of bitterns as alternative sources of critical raw materials. Journal of Cleaner Production. 436:140412. AbstractWebsite

Mineral extraction from seawater brines has emerged as a viable solution to reduce Europe's reliance on imported Critical Raw Materials (CRM). However, the economic viability of this approach hinges on the local demand for sodium chloride, the primary product of such extraction processes. This study investigates the potential of residual brines, commonly known as "bitterns," generated during solar sea-salt extraction in traditional saltworks, as an alternative source of minerals. The Mediterranean region, encompassing South-European, North-African, Near East coasts, and parts of the Atlantic regions, is particularly conducive to exploring this prospect due to its extensive solar sea salt industry. Saltworks in the region, adopting various operational strategies based on feed quality or local climate conditions, produce different types of bitterns, each holding a latent resource potential that has remained largely unexplored. Within the framework of the EU-funded SEArcularMINE project, it was conducted an extensive analytical campaign to characterize bitterns collected from a diverse saltworks network. The analysis revealed the presence of sodium, potassium, magnesium, chloride, sulfate, and bromide in concentrations ranging from g/kg, while boron, calcium, lithium, rubidium, and strontium were found in the mg/kg range. Additionally, trace elements (TEs) such as cobalt, cesium, gallium, and germanium were detected at concentrations in the order of μg/kg. Detailed results on the composition of bitterns are presented, emphasizing the distinct characteristics observed at different sites. The estimated potential for mineral recovery from these bitterns is approximately 190 €/m3, considering the production capacity of about 9 Mm3 per year in the Mediterranean area. This finding underscores the significant contribution that mineral recovery from bitterns could make in securing access to CRMs for the European Union.

2022
Lejarazu-Larrañaga, A, Ortiz JM, Molina S, Pawlowski S, Galinha CF, Otero V, García-Calvo E, Velizarov S, Crespo JG.  2022.  Nitrate Removal by Donnan Dialysis and Anion-Exchange Membrane Bioreactor Using Upcycled End-of-Life Reverse Osmosis Membranes. Membranes. 12, Number 2 AbstractWebsite

This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment. Overall, this work validates the technical feasibility of using RO upcycled AEMs in DD and IEMB processes for nitrate removal. This membrane recycling concept might also find applications for the removal and/or recovery of other target negatively charged species.

2018
Pawlowski, S, Nayak N, Meireles M, Portugal CAM, Velizarov S, Crespo JG.  2018.  CFD modelling of flow patterns, tortuosity and residence time distribution in monolithic porous columns reconstructed from X-ray tomography data. Chemical Engineering Journal. 350:757-766. AbstractWebsite

Highly porous monolithic alumina columns find a wide variety of applications, including in chromatography, due to increased surface area and good accessibility to the ligands and reduced diffusional hindrances. Several modelling approaches have been applied to describe experimentally observed flow behaviour in such materials, which morphology plays a key role in determining their hydrodynamic and mass transfer properties. In this work, a direct computational fluid dynamics (CFD) modelling approach is proposed to simulate flow behaviour in monolithic porous columns. The morphological structure of a fabricated alumina monolith was first reconstructed using 3D X-ray tomography data and, subsequently, OpenFOAM, an open-source CFD tool, was used to simulate the essential parameters for monoliths’ performance characterisation and optimisation, i.e. velocity and pressure fields, fluid streamlines, shear stress and residence time distribution (RTD). Moreover, the tortuosity of the monolith was estimated by a novel method, using the computed streamlines, and its value (∼1.1) was found to be in the same range of the results obtained by known experimental, analytical and numerical equations. Besides, it was observed (for the case of the monolith studied) that fluid transport was dominated by flow heterogeneities and advection, while the shear stress at pore mouths was significantly higher than in other regions. The proposed modelling approach, with expected high potential for designing target materials, was successfully validated by an experimentally obtained residence time distribution (RTD).