Publications

Export 9 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Carvalho, A, Sebastiao PJ, Fonseca I, Matos J, Goncalves MC.  2015.  Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous and Mesoporous Materials. 217:102-108. AbstractWebsite

Four silica-based porous nanosystems were synthesized with different organic substitutes and the molecular dynamics of water in these constrained environment was investigated. The nanosystems were silica and three organic modified silica nanoparticles (NP) with diameters in the range 80-300 nm with different porous dimensions, surface areas, and surface properties (e.g. hydrophilicity/hydrophobicity). Molecular dynamics was studied by pulsed field gradient NMR and by proton spin-lattice relaxation in a broad range of Larmor frequencies. A coherent analysis of the diffusion coefficients and spin-lattice relaxation data is presented taking into account a relaxation model associated to water molecular dynamics in close contact with NP surfaces. From our results it was possible to access the details of the water molecular movements in the nanosystems and to single out two water populations presenting distinct molecular dynamics. Characteristic distances for water rotations mediated by translational diffusion were estimated in consistency with the NP's dimensions and pores sizes obtained by TEM and BET experimental techniques. This knowledge has both fundamental and practical relevance since these NP have applications in nanomedicine, not only in therapy but also in diagnostic procedures and more recently in theranostic. (C) 2015 Elsevier Inc. All rights reserved.

Corvo, M, Sardinha J, Menezes SC, Einloft S, Seferin M, Dupont J, Casimiro T, Cabrita EJ.  2013.  Solvation of carbon dioxide in [C4 mim][BF(4)] and [C(4) mim][PF(6)] ionic liquids revealed by high-pressure NMR spectroscopy. Angew Chem Int Ed Engl. 52:13024-7., Number 49 AbstractWebsite

Where is CO2 ? The intermolecular interactions of [C4 mim]BF4 and [C4 mim]PF6 ionic liquids and CO2 have been determined by high-pressure NMR spectroscopy in combination with molecular dynamic simulations. The anion and the cation are both engaged in interactions with CO2 . A detailed picture of CO2 solvation in these ILs is provided. CO2 solubility is essentially determined by the microscopic structure of the IL.

Corvo, MC, Sardinha J, Menezes SC, Einloft S, Seferin M, Dupont J, Casimiro T, Cabrita EJ.  2013.  Solvation of Carbon Dioxide in [C4mim][BF4] and [C4mim][PF6] Ionic Liquids Revealed by High-Pressure NMR Spectroscopy. Angewandte Chemie International Edition. 52:13024–13027., Number 49: WILEY-VCH Verlag Abstract
n/a
Corvo, M, de Menezes SC, Magalhães TO, Seferin M, Einloft S, Casimiro T, Cabrita EJ.  2011.  Studying the Solubility of CO2 in Ionic Liquids Using High Pressure NMR. Abstract
n/a
Braz, L, Grenha A, Corvo MC, Lourenço JP, Ferreira D, Sarmento B, da Costa ARM.  2018.  Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers. 181:974–985.: Elsevier AbstractWebsite

The development of LBG-based nanoparticles intending an application in oral immunization is presented. Nanoparticle production occurred by mild polyelectrolyte complexation, requiring the chemical modification of LBG. Three LBG derivatives were synthesized, namely a positively charged ammonium derivative (LBGA) and negatively charged sulfate (LBGS) and carboxylate (LBGC) derivatives. These were characterized by Fourier-transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and x-ray diffraction. As a pharmaceutical application was aimed, a toxicological analysis of the derivatives was performed by both MTT test and LDH release assay.

Several nanoparticle formulations were produced using LBGA or chitosan (CS) as positively charged polymers, and LBGC or LBGS as negatively charged counterparts, producing nanoparticles with adequate properties regarding an application in oral immunization.

Faria, MR, Cruz MM, Goncalves MC, Carvalho A, Feio G, Martins MB.  2013.  Synthesis and characterization of magnetoliposomes for MRI contrast enhancement. Int J Pharm. 446:183-90., Number 1-2 AbstractWebsite

This work assesses the characteristics of magnetoliposomes of soybean phosphatidylcholine (SPC):cholesterol (Chol) loaded with superparamagnetic iron oxide nanoparticles (IONPs) stabilized with tetramethylammonium hydroxide (TMAOH) and their capacity to enhance magnetic resonance imaging (MRI) contrast. Magnetoliposomes of SPC were used for comparative studies. IONPs and magnetoliposomes were characterized using transmission electron microscopy, dynamic light scattering, SQUID magnetometry, FTIR and MRI. The saturation magnetization at 10K was  0.06 Am(2)/kg for SPC:Chol magnetoliposomes with 7 g iron oxide/mol of lipid and  0.05 Am(2)/kg for SPC magnetoliposomes with 21 g iron oxide/mol of lipid. As these values are associated with the number of incorporated magnetic IONPs, the saturation magnetization is 1.2 times higher for magnetoliposomes of SPC:Chol as compared with magnetoliposomes of SPC alone. The behavior of temperature dependence in both cases is typical of superparamagnetic particles. FTIR spectra evidence the increase of magnetoliposome membrane ordering with the presence of Chol. Principal component analysis (PCA) applied to FTIR spectra evidenced a clear distinction between scores for SPC:Chol, and SPC magnetoliposomes and for SPC empty liposomes. PCA applied to FTIR data differentiate magnetoliposomes from empty liposomes. MR images of aqueous phantoms obtained with and without magnetoliposomes, clearly evidence their effect on T2 image weighting.

Casimiro, MH, Corvo M, Ramos AM, Cabrita EJ, Ramos AM, Ferreira LM.  2013.  Synthesis and characterization of novel $\gamma$-induced porous PHEMA–IL composites. Materials Chemistry and Physics. 138:11–16., Number 1: Elsevier Abstract
n/a
Casimiro, MH, Corvo M, Ramos AM, Cabrita EJ, Ramos AM, Ferreira LM.  2013.  Synthesis and characterization of novel gamma-induced porous PHEMA-IL composites. Materials Chemistry and Physics. 138:11-16., Number 1 AbstractWebsite

A novel porous polymer-ionic liquid composite with poly(2-hydroxyethyl methacrylate) (PHEMA) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) has been synthesized by gamma-irradiation without heat or chemical initiators. The products can be reversibly converted into organogels. The composites are potential candidates for electrochemical applications. The use of gamma-radiation can be a simple and versatile alternative way to obtain these materials. (C) 2012 Elsevier B.V. All rights reserved.

Corvo, M, Pereira MMA.  2007.  Synthesis of $\gamma$-amino acid analogues from natural $\alpha$-amino acids by a radical pathway. Amino acids. 32:243–246., Number 2: Springer Abstract
n/a