Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Santos, T, Carvalho J, Corvo MC, Cabrita EJ, Queiroz JA, Cruz C.  2016.  L-tryptophan and dipeptide derivatives for supercoiled plasmid DNA purification. International Journal of Biological Macromolecules. 87:385-396.: Elsevier AbstractWebsite

The present study focus on the preparation of chromatography supports for affinity-based chromatography of supercoiled plasmid purification. Three l-tryptophan based supports are prepared through immobilization on epoxy-activated Sepharose and characterized by HR-MAS NMR. The SPR is employed for a fast screening of l-tryptophan derivatives, as potential ligands for the biorecognition of supercoiled isoform, as well as, to establish the suitable experimental conditions for the chromatography. The results reveal that the overall affinity is high (KD = 10−9 and 10−8 M) and the conditions tested show that the use of HEPES 100 mM enables the separation and purification of supercoiled at T = 10 °C. The STD-NMR is performed to accomplish the epitope mapping of the 5′-mononucleotides bound to l-tryptophan derivatives supports. The data shows that the interactions between the three supports and the 5′-mononucleotides are mainly hydrophobic and π–π stacking. The chromatography experiments are performed with l-tryptophan support and plasmids pVAX-LacZ and pPH600. The supercoiled isoform separation is achieved at T = 10 °C by decreasing the concentration of (NH4)2SO4 from 2.7 to 0 M in HEPES for pVAX-LacZ and 2.65 M to 0 M in HEPES for pPH600.

Overall, l-tryptophan derivatives can be a promising strategy to purify supercoiled for pharmaceutical applications.

Santos, T, Carvalho J, Corvo MC, Cabrita EJ, Queiroz JA, Cruz C.  2016.  L-tryptophan and dipeptide derivatives for supercoiled plasmid DNA purification. International Journal of Biological Macromolecules. : Elsevier Abstract
n/a
Mirante, F, Alves AC, Juliao D, Almeida PL, Gago S, Valenca R, Ribeiro JC, de Castro B, Granadeiro CM, Balula SS.  2020.  Large-pore silica spheres as support for samarium-coordinated undecamolybdophosphate: Oxidative desulfurization of diesels, {JAN 1}. Fuel. 259:116213. AbstractWebsite

A novel composite has been prepared through the immobilization of the Keggin sandwich-type {[}Sm (PMo11O39)(2)](11-) anion (SmPOM) on large-pore silica spheres previously functionalized with trimethylammonium groups (TMA). The resulting SmPOM@TMA-LPMS material has been evaluated as heterogeneous catalyst in a biphasic desulfurization 1:1 diesel/extraction solvent system using H2O2 as oxidant. Preliminary experiments were conducted with different extraction solvents, acetonitrile and {[}BMIM]PF6 ionic liquid. The optimized extractive and catalytic oxidative desulfurization system (ECODS) with {[}BMIM]PF6 was able to reach complete sulfur removal from a model diesel containing 2100 ppm S in just 60 min (10 min of initial extraction + 50 min of catalytic step). The reutilization of catalyst and extraction phase has been successfully performed without loss of desulfurization efficiency in consecutive cycles, turning the process more sustainable and cog-effective. The remarkable results with simulated diesel have motivated the application of the catalyst in the desulfurization of untreated real diesel and 74% of efficiency was achieved after only 2 h for three consecutive cycles.