Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel

Citation:
Ribeiro, SO, Granadeiro CM, Corvo MC, Pires J, Campos-Martin JM, de Castro B, Balula SS.  2019.  Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Frontiers in Chemistry. 7:756.: Frontiers

Abstract:

Download Article
Export citation
1,049
TOTAL VIEWS
Article has an altmetric score of 3

Suggest a Research Topic >

SHARE ON
0
0
0
New

ORIGINAL RESEARCH ARTICLE
Front. Chem., 14 November 2019 | https://doi.org/10.3389/fchem.2019.00756
Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel
Susana O. Ribeiro1, Carlos M. Granadeiro1, Marta C. Corvo2, João Pires3, José M. Campos-Martin4, Baltazar de Castro1 and Salete S. Balula1*
1LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
2CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
3Faculdade de Ciências, Centro de Química e Bioquímica and CQE, Universidade de Lisboa, Lisbon, Portugal
4Grupo de Energía y Química Sostenibles (EQS), Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
The monolacunary Keggin-type [PW11O39]7− (PW11) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (N-trimethoxysilypropyl-N, N, N-trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW11@TMA-SBA-15 and PW11@TMA-PMOE composites were evaluated as heterogeneous catalysts in the oxidative desulfurization of a model diesel. The PW11@TMA-SBA-15 catalyst showed a remarkable desulfurization performance by reaching ultra-low sulfur levels (<10 ppm) after only 60 min using either a biphasic extractive and catalytic oxidative desulfurization (ECODS) system (1:1 MeCN/diesel) or a solvent-free catalytic oxidative desulfurization (CODS) system. Furthermore, the mesoporous silica composite was able to be recycled for six consecutive cycles without any apparent loss of activity. The promising results have led to the application of the catalyst in the desulfurization of an untreated real diesel supplied by CEPSA (1,335 ppm S) using the biphasic system. The system has proved to be a highly efficient process by reaching desulfurization values higher than 90% for real diesel during three consecutive cycles.

Notes:

n/a

Related External Link

Website: