Publications

Export 8 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
B
Lehmann, M, Kohn C, Figueirinhas JL, Feio G, Cruz C, Dong RY.  2010.  Biaxial nematic mesophases from shape-persistent mesogens with a fluorenone bending unit. Chemistry. 16:8275-9., Number 28 AbstractWebsite
n/a
C
Dionísio, M, Braz L, Corvo M, Lourenço JP, Grenha A, da Costa AMR.  2016.  Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation. International journal of biological macromolecules. 86:129-138.: Elsevier AbstractWebsite

Pullulan, a neutral polysaccharide, was chemically modified in order to obtain two charged derivatives: reaction with SO3.DMF complex afforded a sulfate derivative (SP), while reaction with glycidyltrimethylammonium chloride gave a quaternary ammonium salt (AP). The presence of the charged groups was confirmed by FTIR. Assessment of the positions where the reaction took place was based on 1H- and 13C NMR (COSY, HSQC-TOCSY, HSQC-DEPT, and HMBC) experiments. Estimation of the degree of substitution (DS) was made from elemental analysis data, and further confirmed by NMR peak areas in the case of AP. These new derivatives showed the capability to condense with each other, forming nanoparticles with the ability to associate a model protein (BSA) and displaying adequate size for drug delivery applications, therefore making them good candidates for the production of pullulan-based nanocarriers by polyelectrolyte complexation.

H
Zanatta, M, Lopes M, Cabrita EJ, Bernardes CES, Corvo M.  2020.  Handling CO2 sorption mechanism in PIL@IL composites. Journal of CO2 Utilization. 41:101225.: Elsevier AbstractWebsite

The mitigation of climate change effects requires the use of alternative materials and technologies to control CO2 atmospheric levels through its capture, storage and use. In this field, the current work presents the evaluation of two poly(ionic liquid)s (PILs) (poly-1-vinyl-3-ethylimidazolium acetate and hydroxide) combined with free ionic liquid (IL) 1-butyl-3-methylimidolium acetate (BMI·OAc) for CO2 capture. The sorption capacity of PIL@IL composites was evaluated under 20 bar of CO2 at 298 K. Nuclear Magnetic Resonance (NMR) spectroscopy allowed quantification of CO2 sorption (physisorption and/or chemisorption) and in situ study of the PIL−CO2 interaction mechanism. NMR in combination with Molecular Dynamics (MD) simulations suggested a 3D organization of PIL composites, maintaining a similar organization to ILs. Also, the use of aqueous solutions of PIL@IL composites was tested, identifying the optimum conditions for water activation (intrinsic water trapped inside IL structure) for chemisorption. As our main contribution, we demonstrate the possibility to control the sorption pathway towards CO2 physisorption, or CO2 conversion (chemisorption) through carbonation (HCO3−/CO32-) according to the PIL/IL ratio, ions structure and water amount. The use of PIL/IL composites is a promising advance for further CO2 reuse approaching a biomimetic carbonation process.

M
Lopes, MM, Barrulas RV, Paiva TG, Ferreira ASD, Zanatta M, Corvo MC.  2019.  Molecular Interactions in Ionic Liquids: The NMR Contribution towards Tailored Solvents. Nuclear Magnetic Resonance. : IntechOpen Abstract

Ionic liquids have been on the spotlight of chemical research field in the last decades. Their physical properties (low vapor pressure, thermal stability, and conductivity) and the possibility of fine tuning make them a versatile class of compounds for a wide range of applications, such as catalysis, energy, and material sciences. Ionic liquids can establish multiple intermolecular interactions with solutes such as electrostatic, van der Waals, or hydrogen bonds. The prospect of designing ionic liquid structures toward specific applications has attracted the attention to these alternative solvents. However, their rational design demands a molecular detailed view, and Nuclear Magnetic Resonance is a unique and privileged technique for this purpose, as it provides atomic resolution and at the same time enables the study of dynamic information. In this chapter, we provide an overview about the application of Nuclear Magnetic Resonance spectroscopy techniques as a methodology for the rational design of ionic liquids as solvents for small organic compounds, CO2 capture, and polymers such as cellulose focusing mainly in the last 10 years.

N
Figueirinhas, JL, Feio G, Cruz C, Lehmann M, Kohn C, Dong RY.  2010.  Nuclear magnetic resonance spectroscopic investigations of phase biaxiality in the nematic glass of a shape-persistent V-shaped mesogen. J Chem Phys. 133:174509., Number 17 AbstractWebsite

Deuterium and carbon-13 NMR spectroscopy were used to study both the high temperature uniaxial nematic and the low temperature biaxial nematic glass of a shape-persistent V-shaped mesogen. It was found that biaxial ordering determined in the domains of the latter has symmetry lower than D(2h) and is compatible with C(2h) symmetry or lower. In particular, elements of the ordering matrix including biaxial phase order parameters were determined from (2)H NMR at two temperatures, one just below the glass transition, and the other deep inside the biaxial glass, which allowed for the characterization of the dominant molecular motions at these temperatures. (13)C NMR magic angle spinning sideband patterns, collected both in the high temperature nematic phase and in the nematic glass, clearly show the difference between them in terms of the phase symmetry.

S
Braz, L, Grenha A, Corvo MC, Lourenço JP, Ferreira D, Sarmento B, da Costa ARM.  2018.  Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers. 181:974–985.: Elsevier AbstractWebsite

The development of LBG-based nanoparticles intending an application in oral immunization is presented. Nanoparticle production occurred by mild polyelectrolyte complexation, requiring the chemical modification of LBG. Three LBG derivatives were synthesized, namely a positively charged ammonium derivative (LBGA) and negatively charged sulfate (LBGS) and carboxylate (LBGC) derivatives. These were characterized by Fourier-transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and x-ray diffraction. As a pharmaceutical application was aimed, a toxicological analysis of the derivatives was performed by both MTT test and LDH release assay.

Several nanoparticle formulations were produced using LBGA or chitosan (CS) as positively charged polymers, and LBGC or LBGS as negatively charged counterparts, producing nanoparticles with adequate properties regarding an application in oral immunization.

W
dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2017.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1-16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.

dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2018.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1–16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.