Publications

Export 23 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Inocencio, S, Cordeiro T, Matos I, Danede F, Sotomayor JC, Fonseca IM, Correia NT, Corvo MC, Dionisio M.  2021.  Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release, {JAN}. MICROPOROUS AND MESOPOROUS MATERIALS. 310:110541. AbstractWebsite

{Aiming to rationalize the release profile of an incorporated pharmaceutical drug in terms of its mobility, driven by guest-host interactions, the poorly water-soluble ibuprofen drug was loaded in a mesoporous inorganic silica matrix with unmodified (MCM-41) and modified surface (MCM-41sil) by post-synthesis silylation, both having pore sizes similar to 3 nm. The single calorimetric detection of a broad glass transition step for both ibuprofen com-posites indicates full drug amorphization, confirmed by the only appearance of an amorphous halo in the powder XRD patterns. Moreover, a gradient profile is disclosed by the heat flux derivative plot in the glass transition, in coherence with the thermogravimetric profile that shows a multi-step decomposition trace for confined ibuprofen in these matrixes. While identical guest dynamics, as probed by dielectric relaxation spectroscopy, were found in both dehydrated composites, a significant molecular population with faster relaxation exists in the hydrated state for the drug inside the unmodified matrix. This was rationalized as the concurrence of true confinement effects, which manifest under nanometer dimensions, and greater water affinity of the unmodified matrix, forcing the drug molecules to be placed mostly in the pore core. Finite size effects are also felt in both dehydrated composites, however guest-host interactions give origin to a dominant population with slowed down mobility that governs the overall guest dynamics. In spite of an inferior number of active sites for drug adsorption in the silylated matrix, a faster ibuprofen delivery in phosphate buffer (pH = 6.8) was observed when the drug is released from unmodified MCM-41 in the hydrated state. Therefore, our results suggest that a relevant role is played by water molecules, which impair a strong guest adsorption in the host surface more efficiently than the limited surface modification, influence the higher ratio of a faster population in the pore core and facilitate the diffusion of the aqueous releasing media inside pores.}

Cordeiro, R, Beira MJ, Cruz C, Figueirinhas JL, Corvo MC, Almeida PL, Rosatella AA, Afonso CAM, Daniel CI, Sebastiao PJ.  2021.  Tuning the H-1 NMR Paramagnetic Relaxation Enhancement and Local Order of {[}Aliquat](+)-Based Systems Mixed with DMSO, {JAN}. International Journal of Molecular Sciences. 22:706., Number {2} AbstractWebsite

{Understanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] and on mixtures of these with different concentrations of DMSO by means of H-1 NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] mixture. The addition of DMSO provides a way of tuning both the local order of these systems and the relaxation enhancement produced by the tetrachloroferrate anion. Very small DMSO volume concentrations (at least up to 1%) lead to enhanced paramagnetic relaxation without compromising the locally ordered domains. Larger DMSO concentrations gradually destroy these domains and reduce the effect of paramagnetic relaxation, while solvating the ions present in the mixtures. The paramagnetic relaxation was explained as a correlated combination of inner and outer-sphere mechanisms, in line with the size and structure differences between cation and anion. This study presents a robust method of characterizing paramagnetic ionic systems and obtaining a consistent analysis for a large set of samples having different co-solvent concentrations.}

2020
Adeoye, O, Conceição J, Serra PA, da Silva AB, Duarte N, Guedes RC, Corvo MC, Aguiar-Ricardo A, Jicsinszky L, Casimiro T, Cabral-Marques H.  2020.  Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydrate Polymers. 227:115287.: Elsevier AbstractWebsite

Lopinavir (LPV) is currently used in combination with ritonavir for the clinical management of HIV infections due to its limited oral bioavailability. Herein, we report the application of an in silico method to study cyclodextrin (CyD) host-guest molecular interaction with LPV for the rational selection of the best CyD for developing a CyD based LPV delivery system. The predicted CyD, a (2-hydroxy)propyl-gamma derivative with high degree of substitution (HP17-γ-CyD) was synthesized and comparatively evaluated with γ-CyD and the commercially available HP-γ-CyD. All complexes were prepared by supercritical assisted spray drying (SASD) and co-evaporation (CoEva) at molar ratios (1:1 and 1:2); and afterwards fully characterized. Results indicate a higher LPV amorphization and solubilization ability of HP17-γ-CyD. The SASD processing technology also enhanced LPV solubilization and release from complexes. The application of in silico methodologies is a feasible approach for the rational and/or deductive development of CyD drug delivery systems.

Duczinski, R, Polesso BB, Bernard FL, Ferrari HZ, Almeida PL, Corvo MC, Cabrita EJ, Menezes S, Einloft S.  2020.  Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. Journal of Environmental Chemical Engineering. AbstractWebsite

Imidazolium-based ionic liquids (ILs) with different cation alkyl chain ([i-C5mim] or [C4mim]) and inorganic anions ([Cl−], [Tf2N−], [PF6−] and [DCA−]) were synthesized and immobilized in commercial mesoporous silica. The synthesized supported ILs (SILs) were characterized using NMR, FTIR, TGA, BET, SEM and TEM. CO2 sorption capacity, reusability and CO2/N2 selectivity were assessed by the pressure-decay technique. The effects of IL concentration, cation and anion chemical structure in CO2 sorption capacity and CO2/N2 separation performance were evaluated. Tests evidenced that the presence of branching on the cation alkyl side chain increases CO2/N2 selectivity. The immobilization of the IL [i-C5TPIm][Cl] on mesoporous silica in different concentrations (50, 20, 10 and 5 %) revealed that lower IL concentration results in higher CO2 sorption capacity. Immobilization of ILs containing fluorinated anions at low concentrations in the mesoporous silica support may promote the improvement of the CO2/N2 selectivity without interfering on CO2 sorption capacity of the original support. CO2 sorption capacity value shown by sample SIL-5 % - [i-C5TPIm][Tf2N] (79.50 ± 0.70 mg CO2  g-1) was close to the value obtained for the pristine mesoporous silica (81.70 ± 2.20 mg CO2 g-1) and the selectivity (4.30 ± 0.70) was more than twice of the one obtained for the support alone (2.32 ± 0.4). Recycle tests demonstrated that the ILs immobilized in mesoporous silica samples are stable, providing a new option to be used in CO2 capture processes.

Zanatta, M, Simon NM, Dupont J.  2020.  The Nature of Carbon Dioxide in Bare Ionic Liquid. ChemSusChem. 13:3101-3109. AbstractWebsite

Ionic liquids (ILs) are among the most studied and promising materials for selective CO2 capture and transformation. The high CO2 sorption capacity associated with the possibility to activate this rather stable molecule through stabilization of ionic/radical species or covalent interactions either with the cation or anion has opened new avenues for CO2 functionalization. However, recent reports have demonstrated that another simpler and plausible pathway is also involved in the sorption/activation of CO2 by ILs associated with basic anions. Bare ILs or IL solutions contain almost invariable significant amounts of water and through interaction with CO2 generate carbonates/bicarbonates rather than carbamic acids or amidates. In these cases, the IL acts as a base and not a nucleophile and yields buffer‐like solutions that can be used to shift the equilibrium toward acid products in different CO2 reutilization reactions. In this Minireview, the emergence of IL buffer‐like solutions as a new reactivity paradigm in CO2 capture and activation is described and analyzed critically, mainly through the evaluation of NMR data.

2019
Zanatta, M, Simon NM, dos Santos FP, Corvo MC, Cabrita EJ, Dupont J.  2019.  Correspondence on “Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids”. Angewandte Chemie International Edition. AbstractWebsite

The preorganization and cooperation mechanism of imide‐based ionic liquids reported in a recent Communication was evocated to rationalize the extremely high gravimetric CO2 capture displayed by these fluids. An analysis of the reported spectroscopic evidences together with additional experiments led to the proposition of an alternative, simpler, and feasible mechanism involving the formation of bicarbonate.

2018
Mirante, F, Dias L, Silva M, Ribeiro SO, Corvo MC, de Castro B, Granadeiro CM, Balula SS.  2018.  Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catalysis Communications. 104:1–8.: Elsevier AbstractWebsite

The heterogenization of the highly active monovacant polyoxotungstate ([PW11O39]7 −, abbreviated as PW11) was achieved by preparing the corresponding long chain quaternary ammonium salt (ODA7PW11, ODA = CH3(CH2)17(CH3)3N). The complete cation exchange confers total heterogeneity to the monovacant catalyst while keeping its oxidative catalytic activity. In fact, the heterogeneous catalyst allowed for the complete desulfurization of a multicomponent model diesel (2000 ppm S) after 40 min of reaction, conciliating extraction (using BMIMPF6 solvent) and oxidation (ECODS process using H2O2 oxidant). The heterogeneous catalyst has shown a superior desulfurization performance when compared with the homogeneous quaternary ammonium TBAPW11 catalyst (TBA = (C4H9)4 N). Both hybrid catalysts have been successfully reused in consecutive ECODS cycles. Additionally, the long carbon chain cations provide a protective environment around the polyoxometalate allowing for ODA7PW11 to retain its heterogeneity and structure after the ECODS process.

dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2018.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1–16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.

2017
Beira, MJ, Daniel CI, Almeida PL, Corvo MC, Rosatella AA, Afonso CAM, Sebastiao PJ.  2017.  1H NMR Relaxometry and Diffusometry Study of Magnetic and Non-Magnetic Ionic Liquid-Based Solutions: Co-Solvent and Temperature Effects. The Journal of Physical Chemistry B. : ACS Publications AbstractWebsite

In this work, 1H NMR relaxometry and diffusometry as well as viscometry experiments were carried out as a means to study the molecular dynamics of magnetic and non-magnetic ionic liquid-based systems. In order to evaluate the effect of a co-solvent on the super-paramagnetic properties observed for Aliquat-iron-based magnetic ionic liquids, mixtures comprising different concentrations, 1% and 10% (v/v), of DMSO-d6 were prepared and analyzed. The results suggest that, when at low concentrations, DMSO-d6 promotes more structured ionic arrangements, thus enhancing these super-paramagnetic properties. Furthermore, the analysis of temperature and water concentration effects allowed to conclude that neither one of these variables sufficiently affected the super-paramagnetic properties of the studied magnetic ionic liquids.

Dupont, J, Simon NM, Zanatta M, dos Santos FP, Corvo MC, Cabrita EJ.  2017.  Carbon dioxide capture by aqueous ionic liquid solutions. ChemSusChem. AbstractWebsite

Confined water in aqueous solutions of imidazolium-based ionic liquids (ILs) associated with acetate and imidazolate anions react reversibly with CO2 to yield bicarbonate. Three types of CO2 sorption in these “IL aqueous solutions” were observed: physical, CO2-imidazolium adduct generation, and bicarbonate formation (up to 1.9 molbicarbonate mol−1 of IL), resulting in a 10:1 (molar ratio) total absorption of CO2 relative to imidazolate anions in the presence of water 1:1000 (IL/water). These sorption values are higher than the classical alkanol amines or even alkaline aqueous solutions under similar experimental conditions.

dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2017.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1-16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.

Dupont, J, Simon NM, Zanatta M, dos Santos FP, Corvo MC, Cabrita EJ.  2017.  Carbon dioxide capture by aqueous ionic liquid solutions. ChemSusChem. Abstract
n/a
2016
Dionísio, M, Braz L, Corvo M, Lourenço JP, Grenha A, da Costa AMR.  2016.  Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation. International journal of biological macromolecules. 86:129-138.: Elsevier AbstractWebsite

Pullulan, a neutral polysaccharide, was chemically modified in order to obtain two charged derivatives: reaction with SO3.DMF complex afforded a sulfate derivative (SP), while reaction with glycidyltrimethylammonium chloride gave a quaternary ammonium salt (AP). The presence of the charged groups was confirmed by FTIR. Assessment of the positions where the reaction took place was based on 1H- and 13C NMR (COSY, HSQC-TOCSY, HSQC-DEPT, and HMBC) experiments. Estimation of the degree of substitution (DS) was made from elemental analysis data, and further confirmed by NMR peak areas in the case of AP. These new derivatives showed the capability to condense with each other, forming nanoparticles with the ability to associate a model protein (BSA) and displaying adequate size for drug delivery applications, therefore making them good candidates for the production of pullulan-based nanocarriers by polyelectrolyte complexation.

2015
Carvalho, A, Domingues I, Goncalves MC.  2015.  Core-shell superparamagnetic nanoparticles with interesting properties as contrast agents for MRI. Materials Chemistry and Physics. 168:42-49. AbstractWebsite

Core shell nanoparticles (NPs) formed by superparamagnetic iron oxide NPs (SPIONs) coated with inorganic or organically modified (ORMOSIL) sol gel silica exhibited promising properties as negative contrast agents (CA) for MRI applications. The potentiality of these new core shell NPs as negative CA for MRI is demonstrated and quantified. The longitudinal and transverse relaxivities of NPs with three different coating compositions were studied at a 7 T magnetic field: silica (TEOS), (3-aminopropyl) triethoxysilane (APTES) and (3-glycidoxypropyl) methyldiethoxysilane (GPTMS). Clearly, it was found that the core shell NPs efficiency as CA was strongly depend on the SPIONs coating. All the three core shell NPs studied presented a very small effect on the longitudinal relaxation time but a pronounced one on the transverse relaxation time, leading to a very high transverse longitudinal relaxivities ratio, decisive for their efficiency as negative CA for MRI The effect of the core shell NPs on the MRI contrast enhancement is obtained and quantified in a set of MRI of agar phantoms obtained at 7 T magnetic field and with a imaging gradient field of 1.6 T/m. The core shell NPs were tested in Zebra-fish (Danio rerio) animal model. Zebra-fish MRI were obtained with animals injected with the three core shell NPs and the contrast enhancement validated. (C) 2015 Elsevier B.V. All rights reserved.

Palma, SI, Carvalho A, Silva J, Martins P, Marciello M, Fernandes AR, Del Puerto Morales M, Roque AC.  2015.  Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: physicochemical and in vitro characterization. Contrast Media Mol Imaging. 10:320-8., Number 4 AbstractWebsite

Gum arabic (GA) is a hydrophilic composite polysaccharide derived from exudates of Acacia senegal and Acacia seyal trees. It is biocompatible, possesses emulsifying and stabilizing properties and has been explored as coating agent of nanomaterials for biomedical applications, namely magnetic nanoparticles (MNPs). Previous studies focused on the adsorption of GA onto MNPs produced by co-precipitation methods. In this work, MNPs produced by a thermal decomposition method, known to produce uniform particles with better crystalline properties, were used for the covalent coupling of GA through its free amine groups, which increases the stability of the coating layer. The MNPs were produced by thermal decomposition of Fe(acac)3 in organic solvent and, after ligand-exchange with meso-2,3-dimercaptosuccinic acid (DMSA), GA coating was achieved by the establishment of a covalent bond between DMSA and GA moieties. Clusters of several magnetic cores entrapped in a shell of GA were obtained, with good colloidal stability and promising magnetic relaxation properties (r2 /r1 ratio of 350). HCT116 colorectal carcinoma cell line was used for in vitro cytotoxicity evaluation and cell-labeling efficiency studies. We show that, upon administration at the respective IC50 , GA coating enhances MNP cellular uptake by 19 times compared to particles bearing only DMSA moieties. Accordingly, in vitro MR images of cells incubated with increasing concentrations of GA-coated MNP present dose-dependent contrast enhancement. The obtained results suggest that the GA magnetic nanosystem could be used as a MRI contrast agent for cell-labeling applications.

Azevedo, G, Domingues B, Abreu H, Sousa-Pinto I, Feio G, Hilliou L.  2015.  Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties. Carbohydr Polym. 116:140-8. AbstractWebsite

The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides.

Corvo, M, Sardinha J, Casimiro T, Marin G, Seferin M, Einloft S, Menezes SC, Dupont J, Cabrita EJ.  2015.  A Rational Approach to CO2 Capture by Imidazolium Ionic Liquids: Tuning CO2 Solubility by Cation Alkyl Branching. ChemSusChem. 8:1935-46., Number 11 AbstractWebsite

Branching at the alkyl side chain of the imidazolium cation in ionic liquids (ILs) was evaluated towards its effect on carbon dioxide (CO2 ) solubilization at 10 and 80 bar (1 bar=1x10(5) Pa). By combining high-pressure NMR spectroscopy measurements with molecular dynamics simulations, a full description of the molecular interactions that take place in the IL-CO2 mixtures can be obtained. The introduction of a methyl group has a significant effect on CO2 solubility in comparison with linear or fluorinated analogues. The differences in CO2 solubility arise from differences in liquid organization caused by structural changes in the cation. ILs with branched cations have similar short-range cation-anion orientations as those in ILs with linear side chains, but present differences in the long-range order. The introduction of CO2 does not cause perturbations in the former and benefits from the differences in the latter. Branching at the cation results in sponge-like ILs with enhanced capabilities for CO2 capture.

2013
Daniel, CI, Chavez FV, Feio G, Portugal CA, Crespo JG, Sebastiao PJ.  2013.  1H NMR relaxometry, viscometry, and PFG NMR studies of magnetic and nonmagnetic ionic liquids. J Phys Chem B. 117:11877-84., Number 39 AbstractWebsite

A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The (1)H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the (1)H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with (35)Cl and (1)H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.

Corvo, M, Sardinha J, Menezes SC, Einloft S, Seferin M, Dupont J, Casimiro T, Cabrita EJ.  2013.  Solvation of carbon dioxide in [C4 mim][BF(4)] and [C(4) mim][PF(6)] ionic liquids revealed by high-pressure NMR spectroscopy. Angew Chem Int Ed Engl. 52:13024-7., Number 49 AbstractWebsite

Where is CO2 ? The intermolecular interactions of [C4 mim]BF4 and [C4 mim]PF6 ionic liquids and CO2 have been determined by high-pressure NMR spectroscopy in combination with molecular dynamic simulations. The anion and the cation are both engaged in interactions with CO2 . A detailed picture of CO2 solvation in these ILs is provided. CO2 solubility is essentially determined by the microscopic structure of the IL.

Corvo, MC, Sardinha J, Menezes SC, Einloft S, Seferin M, Dupont J, Casimiro T, Cabrita EJ.  2013.  Solvation of Carbon Dioxide in [C4mim][BF4] and [C4mim][PF6] Ionic Liquids Revealed by High-Pressure NMR Spectroscopy. Angewandte Chemie International Edition. 52:13024–13027., Number 49: WILEY-VCH Verlag Abstract
n/a
2010
Lehmann, M, Kohn C, Figueirinhas JL, Feio G, Cruz C, Dong RY.  2010.  Biaxial nematic mesophases from shape-persistent mesogens with a fluorenone bending unit. Chemistry. 16:8275-9., Number 28 AbstractWebsite
n/a
Figueirinhas, JL, Feio G, Cruz C, Lehmann M, Kohn C, Dong RY.  2010.  Nuclear magnetic resonance spectroscopic investigations of phase biaxiality in the nematic glass of a shape-persistent V-shaped mesogen. J Chem Phys. 133:174509., Number 17 AbstractWebsite

Deuterium and carbon-13 NMR spectroscopy were used to study both the high temperature uniaxial nematic and the low temperature biaxial nematic glass of a shape-persistent V-shaped mesogen. It was found that biaxial ordering determined in the domains of the latter has symmetry lower than D(2h) and is compatible with C(2h) symmetry or lower. In particular, elements of the ordering matrix including biaxial phase order parameters were determined from (2)H NMR at two temperatures, one just below the glass transition, and the other deep inside the biaxial glass, which allowed for the characterization of the dominant molecular motions at these temperatures. (13)C NMR magic angle spinning sideband patterns, collected both in the high temperature nematic phase and in the nematic glass, clearly show the difference between them in terms of the phase symmetry.

2004
Alexandre, J, Feio G, Marvao MR, Figueiredo J.  2004.  Correlation between high power proton T(2) NMR relaxation and macroscopic viscoelastic properties. Advanced Materials Forum Ii. 455-456(R. Martins, E. Fortunato, Ferreira, I., Dias, C., Eds.).:459-462. Abstract
n/a