Publications

Export 53 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Santos, T, Vilaça P, Quintino L.  2008.  Developments in NDT for detecting imperfections in friction stir welds in aluminium alloys, 2008. Welding in the World. 52(9-10):30-37. AbstractWebsite
n/a
Rosado, LS, Santos TG, Ramos PM, Vilaça P, Piedade M.  2012.  A differential planar eddy currents probe: Fundamentals, modeling and experimental evaluation, 2012. NDT and E International. 51:85-93. AbstractWebsite
n/a
Machado, MA, Silva MI, Martins AP, Carvalho MS, Santos TG.  2021.  Double active transient thermography, nov. NDT & E International. :102566. AbstractWebsite

n/a

Santos, TG, Vilaa P, Miranda RM.  2011.  Electrical conductivity field analysis for evaluation of FSW joints in AA6013 and AA7075 alloys, 2011. Journal of Materials Processing Technology. 211(2):174-180. AbstractWebsite
n/a
Santos, TG, Miranda RM, Vilaça P.  2011.  Electrical conductivity measurement to assess structural modifications in FSW joints in Aluminium alloys, 2011. Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment and Technology. 22:25-29. AbstractWebsite
n/a
Gomes, JF, Miranda RM, Santos TJ, Carvalho PA.  2014.  Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys, 2014. Journal of Toxicology and Environmental Health - Part A: Current Issues. 77(14-16):924-930.: Taylor and Francis Inc. AbstractWebsite
n/a
Antin, K-N, Machado MA, Santos TG, Vilaça P.  2019.  Evaluation of Different Non-destructive Testing Methods to Detect Imperfections in Unidirectional Carbon Fiber Composite Ropes. Journal of Nondestructive Evaluation. 38(23) AbstractWebsite

Online monitoring of carbon fiber reinforced plastic (CFRP) ropes requires non-destructive testing (NDT) methods capable of detecting multiple damage types at high inspection speeds. Three NDT methods are evaluated on artificial and realistic imperfections in order to assess their suitability for online monitoring of CFRP ropes. To support testing, the microstructure and electrical conductivity of a carbon fiber rope is characterized. The compared methods are thermography via thermoelastic stress analysis, ultrasonic testing with commercial phased array transducers, and eddy current testing, supported by tailor-made probes. While thermoelastic stress analysis and ultrasonics proved to be accurate methods for detecting damage size and the shape of defects, they were found to be unsuitable for high-speed inspection of a CFRP rope. Instead, contactless inspection using eddy currents is a promising solution for real-time online monitoring of CFRP ropes at high inspection speeds.

Santos, TG, Miranda RM, Vilaça P.  2014.  Friction Stir Welding assisted by electrical Joule effect, 2014. Journal of Materials Processing Technology. 214(10):2127-2133.: Elsevier Ltd AbstractWebsite
n/a
Rosado, LS, Gonzalez JC, Santos TG, Ramos PM, Piedade M.  2013.  Geometric optimization of a differential planar eddy currents probe for non-destructive testing, 2013. Sensors and Actuators, A: Physical. 197:96-105. AbstractWebsite
n/a
Machado, MA, Antin K-N, Rosado LS, Vilaça P, Santos TG.  2021.  High-speed inspection of delamination defects in unidirectional CFRP by non-contact eddy current testing, nov. Composites Part B: Engineering. 224:109167. AbstractWebsite

n/a

Braz Fernandes, FM, Camacho E, Rodrigues PF, Inácio P, Santos TG, Schell N.  2019.  In Situ Structural Characterization of Functionally Graded Ni–Ti Shape Memory Alloy During Tensile Loading, dec. Shape Memory and Superelasticity. 5:457–467., Number 4 AbstractWebsite

n/a

Vilaça, P, Santos TG, Rosado L, Miranda RM.  2014.  Innovative concept and application of EC probe for inspection of friction stir welds, 2014. International Journal of Microstructure and Materials Properties. 9(3-5):314-326.: Inderscience Enterprises Ltd. AbstractWebsite

n/a

Moreira, PMGP, Santos T, Tavares SMO, Richter-Trummer V, Vilaça P, de Castro PMST.  2009.  Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, 2009. Materials and Design. 30(1):180-187. AbstractWebsite
n/a
Santos, TG, Miranda RM, Vilaça P, Teixeira JP, dos Santos J.  2011.  Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, 2011. Science and Technology of Welding and Joining. 16(7):630-635. AbstractWebsite
n/a
Nascimento, F, Santos T, Vilaça P, Miranda RM, Quintino L.  2009.  Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys, 2009. Materials Science and Engineering A. 506(1-2):16-22. AbstractWebsite
n/a
Santos, TG, Miranda RM, Vilaça P, Teixeira JP.  2011.  Modification of electrical conductivity by friction stir processing of aluminum alloys, 2011. International Journal of Advanced Manufacturing Technology. 57(5-8):511-519. AbstractWebsite
n/a
Machado, MA, Rosado LS, Mendes NM, Miranda RM, Santos TG.  2021.  Multisensor Inspection of Laser-Brazed Joints in the Automotive Industry, nov. Sensors. 21:7335., Number 21 AbstractWebsite

Automobile laser brazing remains a complex process whose results are affected by several process variables that may result in nonacceptable welds. A multisensory customized inspection system is proposed, with two distinct non-destructive techniques: the potential drop method and eddy current testing. New probes were designed, simulated, produced, and experimentally validated in automobile's laser-brazed weld beads with artificially introduced defects. The numerical simulations allowed the development of a new four-point probe configuration in a non-conventional orthogonal shape demonstrating a superior performance in both simulation and experimental validation. The dedicated inspection system allowed the detection of porosities, cracks, and lack of bonding defects, demonstrating the redundancy and complementarity these two techniques provide.

Machado, MA, Rosado LFSG, Mendes NAM, Miranda RMM, dos Santos TJG.  2021.  New directions for inline inspection of automobile laser welds using non-destructive testing, sep. The International Journal of Advanced Manufacturing Technology. AbstractWebsite

An innovative pilot installation and eddy current testing (ECT) inspection system for laser-brazed joints is presented. The proposed system detects both surface and sub-surface welding defects operating autonomously and integrated with a robotized arm. Customized eddy current probes were designed and experimentally validated detecting pore defects with 0.13 mm diameter and sub-surface defects buried 1 mm deep. The integration of the system and the manufacturing process towards an Industry 4.0 quality control paradigm is also discussed.

Rosado, LS, Santos TG, Ramos PM, Vilaça P, Piedade M.  2015.  A new dual driver planar eddy current probe with dynamically controlled induction pattern, 2015. NDT and E International. 70:29-37.: Elsevier Ltd AbstractWebsite
n/a
Matos Filipe, L, Santos TG, Valtchev S, Pamies Teixeira J, Miranda RM.  2012.  New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints, 2012. Materials and Design. 42:25-31. AbstractWebsite
n/a
Santos, T, Vilaça P, dos Santos J, Quintino L.  2009.  A new NDT system for micro imperfections detection: Application to FSW and FSpW, 2009. Welding in the World. 53(SPECIAL ISSUE):361-366. AbstractWebsite
n/a
Santos, TG, Miranda RM, De Carvalho CCCR.  2014.  A new NDT technique based on bacterial cells to detect micro surface defects, 2014. NDT and E International. 63:43-49. AbstractWebsite
n/a
Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials, mar. Journal of Materials Science & Technology. 35:360–368., Number 3 AbstractWebsite

n/a

Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. Journal of Materials Science and Technology. 35:360-368. AbstractWebsite

The use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.

Machado, MA, Rosado L, Pedrosa N, Vostner A, Miranda RM, Piedade M, Santos TG.  2017.  Novel eddy current probes for pipes: Application in austenitic round-in-square profiles of ITER. NDT&E International. 87:111-118. AbstractWebsite

Novel eddy current probes were developed to detect sub-millimetre defects with any orientation on the inner surface of pipes. Five different probes were designed, produced and experimentally validated. These probes include arrays of planar trapezoidal coils in a flexible substrate used alone or together with different winded drive coils. Numerical simulations with Finite Element Method were used to predict the probe response to defects with any orientation. Experimental results in austenitic steel jackets used in ITER revealed that the new probes have an improved reliability compared to conventional toroidal bobbin probes, allowing a higher sensitivity to circumferential defects.