Publications

Export 39 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Santos, TG, Miranda RM, Vilaça P, Teixeira JP.  2011.  Modification of electrical conductivity by friction stir processing of aluminum alloys, 2011. International Journal of Advanced Manufacturing Technology. :1-9. Abstract
n/a
Machado, MA, Rosado LS, Mendes NM, Miranda RM, Santos TG.  2021.  Multisensor Inspection of Laser-Brazed Joints in the Automotive Industry, nov. Sensors. 21:7335., Number 21 AbstractWebsite

Automobile laser brazing remains a complex process whose results are affected by several process variables that may result in nonacceptable welds. A multisensory customized inspection system is proposed, with two distinct non-destructive techniques: the potential drop method and eddy current testing. New probes were designed, simulated, produced, and experimentally validated in automobile's laser-brazed weld beads with artificially introduced defects. The numerical simulations allowed the development of a new four-point probe configuration in a non-conventional orthogonal shape demonstrating a superior performance in both simulation and experimental validation. The dedicated inspection system allowed the detection of porosities, cracks, and lack of bonding defects, demonstrating the redundancy and complementarity these two techniques provide.

N
Machado, MA, Rosado LFSG, Mendes NAM, Miranda RMM, dos Santos TJG.  2021.  New directions for inline inspection of automobile laser welds using non-destructive testing, sep. The International Journal of Advanced Manufacturing Technology. AbstractWebsite

An innovative pilot installation and eddy current testing (ECT) inspection system for laser-brazed joints is presented. The proposed system detects both surface and sub-surface welding defects operating autonomously and integrated with a robotized arm. Customized eddy current probes were designed and experimentally validated detecting pore defects with 0.13 mm diameter and sub-surface defects buried 1 mm deep. The integration of the system and the manufacturing process towards an Industry 4.0 quality control paradigm is also discussed.

Matos Filipe, L, Santos TG, Valtchev S, Pamies Teixeira J, Miranda RM.  2012.  New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints, 2012. Materials and Design. 42:25-31. AbstractWebsite
n/a
Santos, TG, Miranda RM, De Carvalho CCCR.  2014.  A new NDT technique based on bacterial cells to detect micro surface defects, 2014. NDT and E International. 63:43-49. AbstractWebsite
n/a
Santos, TG, Sorger G, Vilaça P, Miranda RM.  2014.  A non-conventional technique for evaluating welded joints based on the electrical conductivity, 2014. 17th Conference of the European Scientific Association on Material Forming, ESAFORM 2014. 611-612:671-676., Espoo: Trans Tech Publications Ltd AbstractWebsite
n/a
Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials, mar. Journal of Materials Science & Technology. 35:360–368., Number 3 AbstractWebsite

n/a

Sorger, GL, Oliveira JP, Inácio PL, Enzinger N, Vilaça P, Miranda RM, Santos TG.  2019.  Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials. Journal of Materials Science and Technology. 35:360-368. AbstractWebsite

The use of non-destructive evaluation (NDE) techniques for assessing microstructural changes in processed materials is of particular importance as it can be used to assess, qualitatively, the integrity of any material/structure. Among the several NDE techniques available, electrical conductivity measurements using eddy currents attract great attention owing to its simplicity and reliability. In this work, the electrical conductivity profiles of friction stir processed Ti6Al4V, Cu, Pb, S355 steel and gas tungsten arc welded AISI 304 stainless steel were determined through eddy currents and four-point probe. In parallel, hardness measurements were also performed. The profiles matched well with the optical macrographs of the materials: while entering in the processed region a variation in both profiles was always observed. One particular advantage of electrical conductivity profiles over hardness was evident: it provides a better resolution of the microstructural alterations in the processed materials. Moreover, when thermomechanical processing induces microstructural changes that modify the magnetic properties of a material, eddy currents testing can be used to qualitatively determine the phase fraction in a given region of the material. A qualitative relation between electrical conductivity measurements and hardness is observed.

Machado, MA, Rosado L, Pedrosa N, Vostner A, Miranda RM, Piedade M, Santos TG.  2017.  Novel eddy current probes for pipes: Application in austenitic round-in-square profiles of ITER. NDT&E International. 87:111-118. AbstractWebsite

Novel eddy current probes were developed to detect sub-millimetre defects with any orientation on the inner surface of pipes. Five different probes were designed, produced and experimentally validated. These probes include arrays of planar trapezoidal coils in a flexible substrate used alone or together with different winded drive coils. Numerical simulations with Finite Element Method were used to predict the probe response to defects with any orientation. Experimental results in austenitic steel jackets used in ITER revealed that the new probes have an improved reliability compared to conventional toroidal bobbin probes, allowing a higher sensitivity to circumferential defects.

P
Santos, TG, Martins J, Mendes L, Miranda RM.  2014.  Process developments in FSW, 2014. 8th International Conference on Management Science and Engineering Management, ICMSEM 2014. 281:1015-1021.: Springer Verlag AbstractWebsite
n/a
R
Miranda, RM, Santos TG, Gandra J, Lopes N, Silva RJC.  2013.  Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, 2013. Journal of Materials Processing Technology. 213(9):1609-1615. AbstractWebsite
n/a
Santos, TG, Oliveira JP, Machado MA.  2020.  Reliability and NDT Methods. Advanced Structured Materials. :265-295. Abstract

Composites are finding increased use in structural high demanding and high added value applications in advanced industries. A wide diversity exists in terms of matrix type, which can be either polymeric or metallic and type of reinforcements (ceramic, polymeric or metallic). Several technologies have been used to produce these composites; among them, additive manufacturing (AM) is currently being applied. In structural applications, the presence of defects due to fabrication is of major concern, since it affects the performance of a component with negative impact, which can affect, ultimately, human lives. Thus, the detection of defects is highly important, not only surface defects but also barely visible defects. This chapter describes the main types of defects expected in composites produced by AM. The fundamentals of different non-destructive testing (NDT) techniques are briefly discussed, as well as the state of the art of numerical simulation for several NDT techniques. A multiparametric and customized inspection system was developed based on the combination of innovative techniques in modelling and testing. Experimental validation with eddy currents, ultrasounds, X-ray and thermography is presented and analysed, as well as integration of distinctive techniques and 3D scanning characterization.

S
Miranda, RM, Gandra JP, Vilaca P, Quintino L, Santos TG.  2014.  Surface modification by solid state processing, 2014. Surface Modification by Solid State Processing. :1-183.: Elsevier Ltd. AbstractWebsite
n/a
Santos, TG, Lopes N, MacHado M, Vilaça P, Miranda RM.  2014.  Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current, 2014. Journal of Materials Processing Technology. 216:375-380.: Elsevier Ltd AbstractWebsite
n/a