Publications

Export 17 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Santos, S, Marques V, Pires M, Silveira L, Oliveira H, Lanca V, Brito D, Madeira H, Esteves JF, Freitas A, Carreira IM, Gaspar IM, Monteiro C, Fernandes AR.  2012.  High resolution melting: improvements in the genetic diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort. BMC Med Genet. 13:17.12santosbmcmg.pdf
Santos, S, Freitas AT, Fernandes AR.  2014.  Overview of HCM genomics and transcriptomics: molecular tools in HCM assessment for application in clinical medicine. Cardiovascular Disease II. , Hong Kong: iConcept Press Ltd.overview_of_hypertrophic_cardiomyopathy.pdf
Santos, S, Lanca V, Oliveira H, Silveira L, Marques V, Brito D, Madeira H, Bicho M, Fernandes AR.  2011.  Genetic diagnosis of hypertrophic cardiomyopathy using mass spectrometry DNA arrays and high resolution melting. Rev Port Cardiol. 30(1):7-18.11santosrpc.pdf
Santos, MM, Raposo LR, Carrera GVSM, Costa A, Dionisio M, Baptista PV, Fernandes AR, Branco LC.  2019.  Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug, 2019. ChemMedChem. 14(9):907-911. AbstractWebsite

Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid-base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C16 Pyr][Ibu] and [N1,1,2,2OH1 ][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

Silva, J, Fernandes AR, Baptista PV.  2014.  Application of Nanotechnology in Drug Delivery. Application of Nanotechnology in Drug Delivery. (Ali Demir Sezer, Ed.)., Rijeka: InTech, Chapters published application_of_nanotechnology_in_drug_delivery.pdf
Silva, TF, Smolenski P, Martins LMDRS, da Silva MFG, Fernandes AR, Luis D, Silva A, Santos S, Borralho PM, Rodrigues CMP, Pombeiro AJL.  2013.  Cobalt and Zinc Compounds Bearing 1,10-Phenanthroline-5,6-dione or 1,3,5-Triaza-7-phosphaadamantane Derivatives - Synthesis, Characterization, Cytotoxicity, and Cell Selectivity Studies. Eur J Inorg Chem. 2013(21):3651-3658.13silvaejic.pdf
Silva, J, Rodrigues AS, Videira PA, Lasri J, Charmier AJ, Pombeiro AJL, Fernandes AR.  2014.  Characterization of the antiproliferative potential and biological targets of a trans ketoimine platinum complex. Inorg Chim Acta. 423:156-167.
Silva, TF, Martins LM, Guedes da Silva MF, Kuznetsov ML, Fernandes AR, Silva A, Pan CJ, Lee JF, Hwang BJ, Pombeiro AJ.  2014.  Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem Asian J. 9(4):1132-43.14silvacaj.pdf
Silva, TF, Martins LM, da Silva MFG, Fernandes AR, Silva A, Borralho PM, Santos S, Rodrigues CM, Pombeiro AJ.  2012.  Cobalt complexes bearing scorpionate ligands: synthesis, characterization, cytotoxicity and DNA cleavage. Dalton Trans. 41(41):12888-97.12silvadt.pdf
Silva, M, Silva Z, Marques G, Ferro T, Gonçalves M, Monteiro M, van Vliet SJ, Mohr E, Lino AC, Fernandes AR, Lima FA, van Kooyk Y, Matos T, Tadokoro CE, Videira PA.  2016.  Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget . AbstractWebsite

Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs’ ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

Silva, A, Luis D, Santos S, Silva J, Mendo AS, Coito L, Silva TF, da Silva MFG, Martins LM, Pombeiro AJ, Borralho PM, Rodrigues CM, Cabral MG, Videira PA, Monteiro C, Fernandes AR.  2013.  Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: a comparative proteomic approach. Drug Metabol Drug Interact. 28(3):167-76.13silvadmdi.pdf
Sousa, JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJG, Almeida GM.  2017.  Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection, 2017. 1865(11, Part A):1455-1469. AbstractWebsite
n/a
Sutradhar, M, Fernandes AR, Silva J, Mahmudov KT, da Silva FGMC, Pombeiro AJL.  2016.  Water soluble heterometallic potassium-dioxidovanadium(V) (K+/VO3+) complexes as potential antiproliferative agents. J Inorg Biochem. (155):17-25. AbstractWebsite

Two water soluble heterometallic potassium–dioxidovanadium polymers, [KVO2(L1)]n (1) and [KVO2(L2)(H2O)]n (2) [H2L1= (2,3-dihydroxybenzylidene)-2-hydroxybenzohydrazide and H2L2=(2,3-dihydroxybenzylidene)benzohydrazide], have been synthesized and characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction. The antiproliferative potentials of 1 and 2 were examined towards human colorectal carcinoma (HCT116), and lung (A549) and breast (MCF7) adenocarcinoma cell lines. 1 exhibits a high cytotoxic activity against colorectal carcinoma cells (HCT116), with IC50 lower than those for cisplatin.

Sutradhar, M, Alegria ECBA, Ferretti F, Raposo LR, Guedes da Silva MFC, Baptista PV, Fernandes AR, Pombeiro AJL.  2019.  Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers, 2019. J Inorg Biochem. 200:110811. AbstractWebsite

The syntheses of the heterometallic sodium and potassium-dioxidovanadium 2D polymers, [NaVO2(1kappaNOO';2kappaO"-L)(H2O)]n(1) and [KVO2(1kappaNOO';2kappaO';3kappaO"-L)(EtOH)]n(2) (where the kappa notation indicates the coordinating atoms of the polydentate ligand L) derived from (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H2L) are reported. The polymers were characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction analysis. The antiproliferative potential of 1 and 2 was examined towards four human cancer cell lines (ovarian carcinoma, A2780, colorectal carcinoma, HCT116, prostate carcinoma, PC3 and breast adenocarcinoma, MCF-7cell lines) and normal human fibroblasts. Complex 1 and 2 showed the highest cytotoxic activity against A2780 cell line (IC50 8.2 and 11.3muM, respectively) with 1>2 and an IC50 in the same range as cisplatin (IC50 3.4muM; obtained in the same experimental conditions) but, interestingly, with no cytotoxicity to healthy human fibroblasts for concentrations up to 75muM. This high cytotoxicity of 1 in ovarian cancer cells and its low cytotoxicity in healthy cells demonstrates its potential for further biological studies. Our results suggest that both complexes induce ovarian carcinoma cell death via apoptosis and autophagy, but autophagy is the main biological cause of the reduction of viability observed and that ROS (reactive oxygen species) may play an important role in triggering cell death.

Sutradhar, M, Rajeshwari, Roy Barman T, Fernandes AR, Paradinha F, Roma-Rodrigues C, Guedes da Silva FMC, Pombeiro AJL.  2017.  Mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes as potential antiproliferative agents, 2017. 175:267-275. AbstractWebsite

A series of four mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes [CuL(X)]2 [L refers to the dianionic form of (5-bromo-2-hydroxybenzylidene)-2-hydroxybenzohydrazide; X=pyrazine (Pz; 1), pyridine (Py; 2), imidazole (Imz; 3) and 3-pyridinecarbonitrile (3-PyCN; 4)] has been synthesized and characterized by elemental analysis, various spectroscopic techniques and X-ray crystallography (for 1, 2 and 4). The antiproliferative effect of complexes 1–4 was examined in 4 human tumor cell lines (ovarian carcinoma (A2780), colorectal carcinoma (HCT116), lung adenocarcinoma (A549) and breast adenocarcinoma (MCF7)) and in normal human primary Fibroblasts. Complex 4 exhibits a high cytotoxic activity against ovarian and colorectal carcinoma cells (A2780, HCT116 respectively), with IC50 much lower than those for normal primary fibroblasts. Complex 4 could induce cell death via apoptosis but not autophagy in colorectal carcinoma cells.

Sutradhar, M, Fernandes AR, Paradinha F, Rijo P, Garcia C, Roma-Rodrigues C, Pombeiro AJL, Charmier AJ.  2019.  A new Cu(II)-O-Carvacrotinate complex: Synthesis, characterization and biological activity, 2019. J Inorg Biochem. 190:31-37. AbstractWebsite

Herein, we report the first example of the synthesis of a novel type of Cu(II) complex based on a natural product ligand derived from carvacrol. The copper(II) complex [Cu(DCA)2(EtOH)]2.2EtOH (1, HDCAO-carvacrotinic acid) has been synthesized and characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray analysis. Complex 1 and the carvacrotinic acid (2, HDCA) have been studied towards their antimicrobial and antiproliferative activities. For both compounds the antimicrobial activity was assessed against a panel of Gram-positive and Gram-negative bacteria and yeasts. The microdilution method allowed the determination of their Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC). Interestingly, both compounds seem to be more effective on yeasts rather than bacteria especially against C. albicans. Regarding the antimicrobial properties, the compounds appear to present a bacteriostatic behaviour, rather than bactericide. The antiproliferative effect of complex 1, O-carvacrotinic acid (HDCA) 2 and carvacrol (CA) 3 used as a reference to compare their antitumoral activity, was examined in 4 human tumor cell lines (ovarian carcinoma (A2780), colorectal carcinoma (HCT116), lung adenocarcinoma (A549) and breast adenocarcinoma (MCF7)) and in normal human primary fibroblasts. Complex 1 exhibits a moderate cytotoxic activity against ovarian carcinoma cells (A2780), with no cytotoxicity in normal primary human fibroblasts. The moderate cytotoxicity observed in A2780 cells was due to an increase of cell apoptosis.

Svahn, N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodriguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, 2018. Chemistry. 24(55):14654-14667. AbstractWebsite

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 mum) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 mum), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-Hpi contacts as the main driving forces for the three-dimensional packing in these molecules.