Dantas, JM, Brausemann A, Einsle O, Salgueiro CA.
2017.
NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens. FEBS Letters. 591:1657–1666.
AbstractGeobacter sulfurreducens is a dissimilatory metal reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high potential heme. The dissociation constant values indicate the formation of a low affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes.This article is protected by copyright. All rights reserved.
Dantas, JM, Saraiva IH, Morgado L, Silva MA, Schiffer M, Salgueiro CA, Louro RO.
2011.
Orientation of the axial ligands and magnetic properties of the hemes in the cytochromec7 family from Geobacter sulfurreducens determined by paramagnetic NMR. Dalton Transactions. 40(47):12713-12718.
AbstractGeobacter sulfurreducens is a sediment bacterium that contains a large number of multiheme cytochromes. The family of five c7 triheme periplasmic cytochromes from Geobacter sulfurreducens shows structural diversity of the heme core. Structural characterization of the relative orientation of the axial ligands of these proteins by 13C-paramagnetic NMR was carried out. The structures in solution were compared with those obtained by X-ray crystallography. For some hemes significant differences exist between the two methods such that orientation of the magnetic axes obtained from NMR data and the orientation taken from the X-ray coordinates differ. The results allowed the orientation of the magnetic axes to be defined confidently with respect to the heme frame in solution, a necessary step for the use of paramagnetic constraints to improve the complete solution structure of these proteins.
Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.
2018.
Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8
AbstractThe bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.
Dantas, JM, Morgado L, Catarino T, Kokhan O, Pokkuluri PR, Salgueiro CA.
2014.
Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. Biochim Biophys Acta. 1837(6):750-760.
AbstractThe bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.