Publications

Export 110 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Ferreira, MR, Salgueiro CA.  2018.  Biomolecular Interaction Studies Between Cytochrome PpcA From Geobacter sulfurreducens and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA). Frontiers in Microbiology. 9:2741. AbstractWebsite

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium that exhibits an enormous respiratory versatility, including the utilization of several toxic and radioactive metals as electron acceptors. This versatility is also replicated in the capability of the most abundant cytochrome in G. sulfurreducens, the periplasmic triheme cytochrome PpcA, to reduce uranium, chromium and other metal ions. From all possible electron transfer pathways in G. sulfurreducens, those involved in the iron reduction are the best characterized to date. In a previous work we provided structural evidence for the complex interface established between PpcA and the electron acceptor Fe(III)-citrate. However, genetic studies suggested that this acceptor is mainly reduced by outer membrane cytochomes. In the present work, we used UV-visible measurements to demonstrate that PpcA is able to directly reduce the electron acceptor ferric nitrilotriacetic acid (Fe-NTA), a more outer membrane permeable iron chelated form. In addition, the molecular interactions between PpcA and Fe-NTA were probed by Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra obtained for natural abundance and 15N-enriched PpcA samples in the absence and presence of Fe-NTA showed that the interaction is reversible and encompasses a positively charged surface region located in the vicinity of the heme IV. Overall, the study provides for the first time a clear illustration of the formation of an electron transfer complex between PpcA and a readily outer-membrane permeable iron chelated form. The structural and functional relationships obtained explain how a single cytochrome is designed to effectively interact with a wide range of G. sulfurreducens electron acceptors, a feature that can be explored for optimal bioelectrochemical applications.

Ferreira, MR, Morgado L, Salgueiro CA.  2024.  Periplasmic electron transfer network in Geobacter sulfurreducens revealed by biomolecular interaction studies. Protein Science. 33:e5082., Number 7 AbstractWebsite

Abstract Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.

Ferreira, MR, Dantas JM, Salgueiro CA.  2017.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the electron acceptor Fe(iii) citrate studied by NMR. Dalton Trans.. 46:2350-2359.: The Royal Society of Chemistry AbstractWebsite

Proteomic and genetic studies have identified a family of five triheme cytochromes (PpcA-E) that are essential in the iron respiratory pathways of Geobacter sulfurreducens. These include the reduction of Fe(iii) soluble chelated forms or Fe(iii) oxides{,} which can be used as terminal acceptors by G. sulfurreducens. The relevance of these cytochromes in the respiratory pathways of soluble or insoluble forms of iron is quite distinct. In fact{,} while PpcD had a higher abundance in the Fe(iii) oxides supplanted G. sulfurreducens cultures{,} PpcA{,} PpcB and PpcE were important in Fe(iii) citrate supplanted cultures. Based on these observations we probed the molecular interactions between these cytochromes and Fe(iii) citrate by NMR spectroscopy. NMR spectra were recorded for natural abundance and 15N-enriched PpcA{,} PpcB or PpcE samples at increasing amounts of Fe(iii) citrate. The addition of this molecule caused pronounced perturbations on the line width of the protein{'}s NMR signals{,} which were used to map the interaction region between each cytochrome and the Fe(iii) citrate molecule. The perturbations on the NMR signals corresponding to the backbone NH and heme methyl substituents showed that complex interfaces consist of a well-defined patch{,} which surrounds the more solvent-exposed heme IV methyl groups in each cytochrome. Overall{,} this study provides for the first time a clear illustration of the formation of an electron transfer complex between Fe(iii) citrate and G. sulfurreducens triheme cytochromes{,} shown to be crucial in this respiratory pathway.

Ferreira, MR, Fernandes TM, Salgueiro CA.  2020.  Thermodynamic properties of triheme cytochrome PpcF from Geobacter metallireducens reveal unprecedented functional mechanism. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1861:148271., Number 11 AbstractWebsite

The bacterium Geobacter metallireducens is highly efficient in long-range extracellular electron transfer, a process that relies on an efficient bridging between the cytoplasmic electron donors and the extracellular acceptors. The periplasmic triheme cytochromes are crucial players in these processes and thus the understanding of their functional mechanism is crucial to elucidate the extracellular electron transfer processes in this microorganism. The triheme cytochrome PpcF from G. metallireducens has the lowest amino acid sequence identity with the remaining cytochromes from the PpcA-family of G. sulfurreducens and G. metallireducens, making it an interesting target for structural and functional studies. In this work, we performed a detailed functional and thermodynamic characterization of cytochrome PpcF by the complementary usage of NMR and visible spectroscopic techniques. The results obtained show that the heme reduction potentials are negative, different from each other and are also modulated by the redox and redox-Bohr interactions that assure unprecedented mechanistic features to the protein. The results showed that the order of oxidation of the hemes in cytochrome PpcF is maintained in the entire physiological pH range. The considerable separation of the hemes' redox potential values facilitates a sequential transfer within the chain of redox centers in PpcF, thus assuring electron transfer directionality to the electron acceptors.

Fernandes, TM, Morgado L, Salgueiro CA, Turner DL.  2019.  Determination of the magnetic properties and orientation of the heme axial ligands of PpcA from G. metallireducens by paramagnetic NMR. Journal of Inorganic Biochemistry. 198:110718. AbstractWebsite

The rising interest in the use of Geobacter bacteria for biotechnological applications demands a deep understanding of how these bacteria are able to thrive in a variety of environments and perform extracellular electron transfer. The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular acceptors, including heavy metals, toxic organic compounds or electrode surfaces. The periplasmic c-type cytochrome PpcA from this bacterium is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer between the cytoplasm and the extracellular environment. To better understand the functional mechanism of PpcA it is essential to obtain structural data for this cytochrome. In this work, the geometry of the heme axial ligands, as well as the magnetic properties of the hemes were determined for the oxidized form of the cytochrome, using the 13C NMR chemical shifts of the heme α-substituents. The results were further compared with those previously obtained for the homologous cytochrome from Geobacter sulfurreducens. The orientations of the axial histidine planes and the magnetic properties of the hemes are conserved in both proteins. Overall, the results obtained allowed the definition of the orientation of the magnetic axes of PpcA from G. metallireducens, which will be used as constraints to assist the solution structure determination of the cytochrome in the oxidized form.

Fernandes, AP, Nunes TC, Paquete CM, Salgueiro CA.  2017.  Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens. Biochemical Journal. 474:797–808., Number 5: Portland Press Limited AbstractWebsite

Accepted Manuscript online January 16, 2017.Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens. The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens.1D, one-dimensional; CbcL, c- and b-type cytochrome for low potential; EET, extracellular electron transfer; HP, His-patch; ImcH, inner membrane c-type cytochrome; MacA, metal-reduction-associated cytochrome; NaPi, sodium phosphate; NBAF, acetate-fumarate medium; NMR, nuclear magnetic resonance; PpcA, periplasmic c-type cytochrome; SDS–PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis; STC, small tetrahaem cytochrome.

Fernandes, AP, Couto I, Morgado L, Londer YY, Salgueiro CA.  2008.  Isotopic labeling of c-type multiheme cytochromes overexpressed in E. coli. Protein Expression and Purification. 59(1):182-188. AbstractWebsite

Progresses made in bacterial genome sequencing show a remarkable profusion of multiheme c-type cytochromes in many bacteria, highlighting the importance of these proteins in different cellular events. However, the characterization of multiheme cytochromes has been significantly retarded by the numerous experimental challenges encountered by researchers who attempt to overexpress these proteins, especially if isotopic labeling is required. Here we describe a methodology for isotopic labeling of multiheme cytochromes c overexpressed in Escherichia coli, using the triheme cytochrome PpcA from Geobacter sulfurreducens as a model protein. By combining different strategies previously described and using E. coli cells containing the gene coding for PpcA and the cytochrome c maturation gene cluster, an experimental labeling methodology was developed that is based on two major aspects: (i) use of a two-step culture growth procedure, where cell growth in rich media was followed by transfer to minimal media containing 15N-labeled ammonium chloride, and (ii) incorporation of the heme precursor delta-aminolevulinic acid in minimal culture media. The yields of labeled protein obtained were comparable to those obtained for expression of PpcA in rich media. Proper protein folding and labeling were confirmed by UV–visible and NMR spectroscopy. To our knowledge, this is the first report of a recombinant multiheme cytochrome labeling and it represents a major breakthrough for functional and structural studies of multiheme cytochromes.

Fernandes, TM, Silva MA, Morgado L, Salgueiro CA.  2023.  Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. Journal of Biological Chemistry. :105167. AbstractWebsite

Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the extracellular environment, freely diffusing cytochromes or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons, while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.

Fernandes, TM, Morgado L, Turner DL, Salgueiro CA.  2021.  Protein Engineering of Electron Transfer Components from Electroactive Geobacter Bacteria. Antioxidants. 10, Number 6 AbstractWebsite

Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. Geobacter bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive Geobacter bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal Geobacter-mutated strains with improved capabilities in METs.

Fernandes, TM, Morgado L, Salgueiro CA.  2018.  Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from Geobacter metallireducens. Biochemical Journal. : Portland Press Limited AbstractWebsite

The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular electron acceptors, including pollutants or electrode surfaces for current production in microbial fuel cells. For these reasons, G. metallireducens are of interest for practical biotechnological applications. The use of such electron acceptors relies on a mechanism that permits electrons to be transferred to the cell exterior. The cytochrome PpcA from G. metallireducens is a member of a family composed by five periplasmic triheme cytochromes, which are important to bridge the electron transfer from the cytoplasmic donors to the extracellular acceptors. Using NMR and visible spectroscopic techniques, a detailed thermodynamic characterization of PpcA was obtained, including the determination of the heme reduction potentials and their redox and redox-Bohr interactions. These parameters revealed unique features for PpcA from G. metallireducens compared to other triheme cytochromes from different microorganisms, namely the less negative heme reduction potentials and concomitant functional working potential ranges. It was also shown that the order of oxidation of the hemes is pH independent, but the protein is designed to couple e-/H+ transfer exclusively at physiological pH.

Fernandes, TM, Folgosa F, Teixeira M, Salgueiro CA, Morgado L.  2021.  Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens. Biophysical Journal. AbstractWebsite

Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (−154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.

D
Dantas, JM, Brausemann A, Einsle O, Salgueiro CA.  2017.  NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens. FEBS Letters. 591:1657–1666. AbstractWebsite

Geobacter sulfurreducens is a dissimilatory metal reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high potential heme. The dissociation constant values indicate the formation of a low affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes.This article is protected by copyright. All rights reserved.

Dantas, JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR.  2015.  The structure of PccH from Geobacter sulfurreducens: a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 282(11):2215-2231. AbstractWebsite

The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.

Dantas, JM, Silva e Sousa M, Salgueiro CA, Bruix M.  2015.  Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens. Biomolecular NMR Assignments. 9(2):365-368. AbstractWebsite

Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

Dantas, JM, Tomaz DM, Morgado L, Salgueiro CA.  2013.  Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Letters. 587(16):2662-2668. AbstractWebsite

The cytochrome PccH from Geobacter sulfurreducens (Gs) plays a crucial role in current-consuming fumarate-reducing biofilms. Deletion of pccH gene inhibited completely electron transfer from electrodes toward Gs cells. The pccH gene was cloned and the protein heterologously expressed in Escherichia coli. Complementary biophysical techniques including CD, UV-visible and NMR spectroscopy were used to characterize PccH. This cytochrome contains one low-spin c-type heme with His-Met axial coordination and unusual low-reduction potential. This reduction potential is pH-dependent, within the Gs physiological pH range, and is discussed within the context of the electron transfer mechanisms from electrodes to Gs cells.

Dantas, JM, Morgado L, Catarino T, Kokhan O, Pokkuluri PR, Salgueiro CA.  2014.  Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. Biochim Biophys Acta. 1837(6):750-760. AbstractWebsite

The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

Dantas, JM, Morgado L, Marques AC, Salgueiro CA.  2014.  Probing the effect of ionic strength on the functional robustness of the triheme cytochrome PpcA from Geobacter sulfurreducens: a contribution for optimizing biofuel cell's power density. J Phys Chem B. 118(43):12416-12425. AbstractWebsite

The increase of conductivity of electrolytes favors the current production in microbial fuel cells (MFCs). Adaptation of cell cultures to higher ionic strength is a promising strategy to increase electricity production. The bacterium Geobacter sulfurreducens is considered a leading candidate for MFCs. Therefore, it is important to evaluate the impact of the ionic strength on the functional properties of key periplasmic proteins that warrants electron transfer to cell exterior. The effect of the ionic strength on the functional properties of triheme cytochrome PpcA, the most abundant periplasmic cytochrome in G. sulfurreducens, was investigated by NMR and potentiometric methods. The redox properties of heme IV are the most affected ones. Chemical shift perturbation measurements on the backbone NMR signals, at increasing ionic strength, also showed that the region close to heme IV is the most affected due to the large number of positively charged residues, which confer a highly positive electrostatic surface around this heme. The shielding of these positive charges at high ionic strength explain the observed decrease in the reduction potential of heme IV and shows that PpcA was designed to maintain its functional mechanistic features even at high ionic strength.

Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.  2018.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8 AbstractWebsite

The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.

Dantas, JM, Silva MA, Pantoja-Uceda D, Turner DL, Bruix M, Salgueiro CA.  2017.  Solution structure and dynamics of the outer membrane cytochrome OmcF from Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1858(9):733-741. AbstractWebsite

ABSTRACTGene knock-out studies on Geobacter sulfurreducens cells showed that the outer membrane-associated monoheme cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI). In addition, microarray analysis of an OmcF-deficient mutant revealed that many of the genes with decreased transcript level were those whose expression is up-regulated in cells grown with a graphite electrode as electron acceptor, suggesting that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electricity production by G. sulfurreducens in microbial fuel cells. 15N,13C–labeled OmcF was produced and NMR spectroscopy was used to determine the solution structure of the protein in the fully reduced state and the pH-dependent conformational changes. In addition, 15N relaxation NMR experiments were used to characterize the overall and internal backbone dynamics of OmcF. The structure obtained is well defined, with an average pairwise root mean square deviation of 0.37 Å for the backbone atoms and 0.98 Å for all heavy atoms. For the first time a solution structure and the protein motions were determined for an outer membrane cytochrome from G. sulfurreducens, which constitutes an important step to understand the extracellular electron transfer mechanism in Geobacter cells.

Dantas, JM, Morgado L, Londer YY, Fernandes AP, Louro RO, Pokkuluri PR, Schiffer M, Salgueiro CA.  2012.  Pivotal role of the strictly conserved aromatic residue F15 in the cytochrome c7 family. Journal of Biological Inorganic Chemistry. 17(1):11-24. AbstractWebsite

Cytochromes c7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins - phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H-15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.

Dantas, JM, Salgueiro CA, Bruix M.  2015.  Backbone, side chain and heme resonance assignments of the triheme cytochrome PpcD from Geobacter sulfurreducens. Biomol NMR Assign. 9(1):211-214. AbstractWebsite

Gene knock-out studies on Geobacter sulfurreducens (Gs) cells showed that the periplasmic triheme cytochrome PpcD is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI) oxides. More recently, it was also shown that the gene encoding for PpcD has higher transcript abundance when Gs cells utilize graphite electrodes as sole electron donors to reduce fumarate. This sets PpcD as the first multiheme cytochrome to be involved in Gs respiratory pathways that bridge the electron transfer between the cytoplasm and cell exterior in both directions. Nowadays, extracellular electron transfer (EET) processes are explored for several biotechnological applications, which include bioremediation, bioenergy and biofuel production. Therefore, the structural characterization of PpcD is a fundamental step to understand the mechanisms underlying EET. However, compared to non-heme proteins, the presence of numerous proton-containing groups in the redox centers presents additional challenges for protein signal assignment and structure calculation. Here, we report the complete assignment of the heme proton signals together with 1H, 13C and 15N backbone and side chain assignments of the reduced form of PpcD.

Dantas, JM, Kokhan O, Pokkuluri RP, Salgueiro CA.  2015.  Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1847:1129-1138., Number 10 AbstractWebsite

Abstract Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the \{HS\} analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for \{HS\} respiration in G. sulfurreducens, but the process is far from fully understood. In this work, \{NMR\} chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the \{AH2QDS\} binds reversibly to the more solvent exposed edge of PpcA heme IV. The \{NMR\} and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme İV\} (− 127 mV) compared to that of \{AH2QDS\} (− 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between \{AH2QDS\} and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the \{HS\} in any redox state available in the environment for its metabolic needs.

Dantas, JM, Simões T, Morgado L, Caciones C, Fernandes AP, Silva MA, Bruix M, Pokkuluri RP, Salgueiro CA.  2016.  Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens. The Journal of Physical Chemistry B. 120:10221-10233., Number 39 AbstractWebsite

A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e–/H+ transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conserved leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu6 in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e–/H+ pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe6 in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.

Dantas, JM, Portela PC, Fernandes AP, Londer YY, Yang X, Duke NEC, Schiffer M, Pokkuluri RP, Salgueiro CA.  2019.  Structural and Functional Relevance of the Conserved Residue V13 in the Triheme Cytochrome PpcA from Geobacter sulfurreducens. The Journal of Physical Chemistry B. 123:3050-3060., Number 14 AbstractWebsite

The triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant under several growth conditions and is important for extracellular electron transfer. PpcA plays a central role in transferring electrons resulting from the cytoplasmic oxidation of carbon compounds to the cell exterior. This cytochrome is designed to couple electron and proton transfer at physiological pH, a process achieved via the selection of dominant microstates during the redox cycle of the protein, which are ultimately regulated by a well-established order of oxidation of the heme groups. The three hemes are covered only by a polypeptide chain of 71 residues and are located in the small hydrophobic core of the protein. In this work, we used NMR and X-ray crystallography to investigate the structural and functional role of a conserved valine residue (V13) located within van der Waals contact of hemes III and IV. The residue was replaced by alanine (V13A), isoleucine (V13I), serine (V13S), and threonine (V13T) to probe the effects of the side chain volume and polarity. All mutants were found to be as equally thermally stable as the native protein. The V13A and V13T mutants produced crystals and their structures were determined. The side chain of the threonine residue introduced in V13T showed two conformations, but otherwise the two structures did not show significant changes from the native structure. Analysis of the redox behavior of the four mutants showed that for the hydrophobic replacements (V13A and V13I) the redox properties, and hence the order of oxidation of the hemes, were unaffected in spite of the larger side chain, isoleucine, showing two conformations with minor changes of the protein in the heme core. On the other hand, the polar replacements (V13S and V13T) showed the presence of two more distinctive conformations, and the oxidation order of the hemes was altered. Overall, it is striking that a single residue with proper size and polarity, V13, was naturally selected to ensure a unique conformation of the protein and the order of oxidation of the hemes, endowing the cytochrome PpcA with the optimal functional properties necessary to ensure effectiveness in the extracellular electron transfer respiratory pathways of G. sulfurreducens.

Dantas, JM, Saraiva IH, Morgado L, Silva MA, Schiffer M, Salgueiro CA, Louro RO.  2011.  Orientation of the axial ligands and magnetic properties of the hemes in the cytochromec7 family from Geobacter sulfurreducens determined by paramagnetic NMR. Dalton Transactions. 40(47):12713-12718. AbstractWebsite

Geobacter sulfurreducens is a sediment bacterium that contains a large number of multiheme cytochromes. The family of five c7 triheme periplasmic cytochromes from Geobacter sulfurreducens shows structural diversity of the heme core. Structural characterization of the relative orientation of the axial ligands of these proteins by 13C-paramagnetic NMR was carried out. The structures in solution were compared with those obtained by X-ray crystallography. For some hemes significant differences exist between the two methods such that orientation of the magnetic axes obtained from NMR data and the orientation taken from the X-ray coordinates differ. The results allowed the orientation of the magnetic axes to be defined confidently with respect to the heme frame in solution, a necessary step for the use of paramagnetic constraints to improve the complete solution structure of these proteins.