Salgueiro, CA, Morgado L, Fonseca B, Lamosa P, Catarino T, Turner DL, Louro RO.
2005.
Binding of ligands originates small perturbations on the microscopic thermodynamic properties of a multicentre redox protein. FEBS Journal. 272(9):2251-2260.
AbstractNMR and visible spectroscopy coupled to redox measurements were used to determine the equilibrium thermodynamic properties of the four haems in cytochrome c3 under conditions in which the protein was bound to ligands, the small anion phosphate and the protein rubredoxin with the iron in the active site replaced by zinc. Comparison of these results with data for the isolated cytochrome shows that binding of ligands causes only small changes in the reduction potentials of the haems and their pairwise interactions, and also that the redox-sensitive acid–base centre responsible for the redox–Bohr effect is essentially unaffected. Although neither of the ligands tested is a physiological partner of cytochrome c3, the small changes observed for the thermodynamic properties of cytochrome c3 bound to these ligands vs. the unbound state, indicate that the thermodynamic properties measured for the isolated protein are relevant for a physiological interpretation of the role of this cytochrome in the bioenergetic metabolism of Desulfovibrio.
Silva, MA, Fernandes AP, Turner DL, Salgueiro CA.
2023.
A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments. International Journal of Molecular Sciences. 24, Number 8
AbstractPeriplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 ( 42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C ( 11 kDa/three hemes) and D ( 10 kDa/three hemes), as well as for bi-domain CD ( 21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.