Publications

Export 17 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Morgado, L, Fernandes AP, Londer YY, Bruix M, Salgueiro CA.  2010.  One simple step in the identification of the cofactors signals, one giant leap for the solution structure determination of multiheme proteins. Biochemical and Biophysical Research Communications. 393(3):466-470. AbstractWebsite

Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural–functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H–13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.

Morgado, L, Dantas JM, Simões T, Londer YY, Pokkuluri PR, Salgueiro CA.  2013.  Role of Met58 in the regulation of electron/proton transfer in trihaem cytochrome PpcA from Geobacter sulfurreducens. Bioscience Reports. 33(1):11-22. AbstractWebsite

The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e-/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e-/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.

Morgado, L, Dantas JM, Bruix M, Londer YY, Salgueiro CA.  2012.  Fine Tuning of Redox Networks on Multiheme Cytochromes from Geobacter sulfurreducens Drives Physiological Electron/Proton Energy Transduction. Bioinorganic Chemistry and Applications. 2012(Article ID 298739):1-9. AbstractWebsite

The bacterium Geobacter sulfurreducens (Gs) can grow in the presence of extracellular terminal acceptors, a property that is currently explored to harvest electricity from aquatic sediments and waste organic matter into microbial fuel cells. A family composed of five triheme cytochromes (PpcA-E) was identified in Gs. These cytochromes play a crucial role by bridging the electron transfer from oxidation of cytoplasmic donors to the cell exterior and assisting the reduction of extracellular terminal acceptors. The detailed thermodynamic characterization of such proteins showed that PpcA and PpcD have an important redox-Bohr effect that might implicate these proteins in the e−/H+ coupling mechanisms to sustain cellular growth. The physiological relevance of the redox-Bohr effect in these proteins was studied by determining the fractional contribution of each individual redox-microstate at different pH values. For both proteins, oxidation progresses from a particular protonated microstate to a particular deprotonated one, over specific pH ranges. The preferred e−/H+ transfer pathway established by the selected microstates indicates that both proteins are functionally designed to couple e−/H+ transfer at the physiological pH range for cellular growth.

Morgado, L, Saraiva IH, Louro RO, Salgueiro CA.  2010.  Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR. FEBS Letters. 584(15):3442-3445. AbstractWebsite

The geometry of the axial ligands of the hemes in the triheme cytochrome PpcA from Geobacter sulfurreducens was determined in solution for the ferric form using the unambiguous assignment of the NMR signals of the α-substituents of the hemes. The paramagnetic 13C shifts of the hemes can be used to define the heme electronic structure, the geometry of the axial ligands, and the magnetic susceptibility tensor. The latter establishes the magnitude and geometrical dependence of the pseudocontact shifts, which are crucial to warrant reliable structural constraints for a detailed structural characterization of this paramagnetic protein in solution.

Morgado, L, Bruix M, Orshonsky V, Londer YY, Duke NEC, Yang X, Pokkuluri PR, Schiffer M, Salgueiro CA.  2008.  Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1777(9):1157-1165. AbstractWebsite

The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III–I–IV for PpcB, as opposed to I–IV–III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

Morgado, L, Bruix M, Pessanha M, Londer YY, Salgueiro CA.  2010.  Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity. Biophysical Journal. 99(1):293-301. AbstractWebsite

A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens.

Morgado, L, Fernandes AP, Dantas JM, Silva MA, Salgueiro CA.  2012.  On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes. Biochemical Society transactions. 40(6):1295-1301. AbstractWebsite

Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens.

Morgado, L, Bruix M, Pokkuluri RP, Salgueiro CA, Turner DL.  2017.  Redox- and pH-linked conformational changes in triheme cytochrome PpcA from Geobacter sulfurreducens. Biochemical Journal. 474:231–246., Number 2: Portland Press Limited AbstractWebsite

Accepted Manuscript online November 14, 2016.The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e-/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e-/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.EET, extracellular electron transfer; IM, inner membrane; IPTG, isopropyl β-d-thiogalactoside; MFCs, microbial fuel cells; NOE, Nuclear Overhauser effect; OM, outer membrane; rmsd, root mean square deviation.

Morgado, L, Bruix M, Londer YY, Pokkuluri PR, Schiffer M, Salgueiro CA.  2007.  Redox-linked conformational changes of a multiheme cytochrome from Geobacter sulfurreducens. Biochemical and Biophysical Research Communications. 360(1):194-198. AbstractWebsite

Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c3 isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.

Morgado, L, Fernandes AP, Londer YY, Pokkuluri PR, Schiffer M, Salgueiro CA.  2009.  Thermodynamic characterization of the redox centres in a representative domain of a novel c-type multihaem cytochrome. Biochemical Journal. 420(3):485-492. AbstractWebsite

Multihaem cytochromes that could form protein “nanowires” were identified in the Geobacter sulfurreducens genome, and represent a new type of multihaem cytochrome. The sequences of these proteins, two with 12 haems (GSU1996, GSU0592) and one with 27 haems (GSU2210), suggest that they are formed with domains homologous to the trihaem cytochrome c7. Although all three haems have bis-His co-ordination in cytochromes c7, in each domain of the above polymers, the haem equivalent to haem IV has His-Met co-ordination. We previously determined the structure and measured the macroscopic redox potential of one representative domain (domain C) of a dodecahaem cytochrome (GSU1996). In the present study, the microscopic redox properties of the individual haem groups of domain C were determined using NMR and UV–visible spectroscopies. The reduction potentials of the haems for the fully reduced and protonated protein are different from each other (haem I, −106 mV; haem III, −136 mV; and haem IV, −125 mV) and are strongly modulated by redox interactions. This result is rather surprising since the His-Met co-ordinated haem IV does not have the highest potential as was expected. The polypeptide environment of each haem group and the strong haem pairwise redox interactions must play a dominant role in controlling the individual haem potentials. The strong redox interactions between the haems extend the range of their operating potentials at physiological pH (haem I, −71 mV, haem III, −146 mV and haem IV, −110 mV). Such a modulation in haem potentials is likely to have a functional significance in the metabolism of G. sulfurreducens.

Morgado, L, Paixão VB, Schiffer M, Pokkuluri PR, Bruix M, Salgueiro CA.  2012.  Revealing the structural origin of the redox-Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens. Biochemical Journal. 441(1):179-187. AbstractWebsite

Gs (Geobacter sulfurreducens) can transfer electrons to the exterior of its cells, a property that makes it a preferential candidate for the development of biotechnological applications. Its genome encodes over 100 cytochromes and, despite their abundance and key functional roles, to date there is no structural information for these proteins in solution. The trihaem cytochrome PpcA might have a crucial role in the conversion of electronic energy into protonmotive force, a fundamental step for ATP synthesis in the presence of extracellular electron acceptors. In the present study, 15N-labelled PpcA was produced and NMR spectroscopy was used to determine its solution structure in the fully reduced state, its backbone dynamics and the pH-dependent conformational changes. The structure obtained is well defined, with an average pairwise rmsd (root mean square deviation) of 0.25 Å (1 Å=0.1 nm) for the backbone atoms and 0.99 Å for all heavy atoms, and constitutes the first solution structure of a Gs cytochrome. The redox-Bohr centre responsible for controlling the electron/proton transfer was identified, as well as the putative interacting regions between PpcA and its redox partners. The solution structure of PpcA will constitute the foundation for studies aimed at mapping out in detail these interacting regions.

Morgado, L, Paixão VB, Salgueiro CA, Bruix M.  2011.  Backbone, side chain and heme resonance assignments of the triheme cytochrome PpcA from Geobacter sulfurreducens. Biomolecular NMR Assignments. 5(1):113-116. AbstractWebsite

Gene knock-out studies on Geobacter sulfurreducens cells showed that the periplasmic triheme cytochrome PpcA is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI) oxides. The crucial role of this protein in bridging the electron transfer between the cytoplasm and cell exterior was further supported by proteomics studies. In comparison with non-heme proteins, the presence of numerous proton-containing groups in the heme groups causes additional challenges to the full protein assignment and structure calculation. Here, we report the complete assignment of the heme proton signals together with the 1H and 15N backbone and side chain assignments of the reduced form of PpcA.

Morgado, L, Salgueiro CA.  2022.  Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes, 02. Metallomics. AbstractWebsite

{Cytochromes are electron transfer proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells’ exterior. The capability of sending electron outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and elucidate the stepwise electron transfer along the respiratory paths. However, investigating direct electron transfer events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. NMR spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor electron transfer within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of electron transfer between c-type cytochromes, using as model a triheme periplasmic cytochrome (PpcA) and a membrane associated monoheme cytochrome (OmcF) from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional electron transfer within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory electron transfer chains.}

Morgado, L, Lourenço S, Londer YY, Schiffer M, Pokkuluri PR, Salgueiro CA.  2014.  Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities. PLoS One. 9(8):e105566. AbstractWebsite

PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e-/H(+) energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+) transfer pathways. The results showed that the preferred e-/H(+) transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.

Messias, AC, Aguiar AP, Brennan L, Salgueiro CA, Saraiva LM, Xavier AV, Turner DL.  2006.  Solution structures of tetrahaem ferricytochrome c3 from Desulfovibrio vulgaris (Hildenborough) and its K45Q mutant: The molecular basis of cooperativity. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1757(2):143-153. AbstractWebsite

The NMR structure of the oxidised wild-type cytochrome c3 from Desulfovibrio vulgaris Hildenborough was determined in solution. Using a newly developed methodology, NMR data from the K45Q mutant was then grafted onto data from the wild-type protein to determine the structure in the region of the mutation. The structural origins of the redox-Bohr effect and haem–haem cooperativities are discussed with respect to the redox-related conformational changes observed in solution.

Marques, AC, Santos L, Dantas JM, Gonçalves A, Casaleiro S, Martins R, Salgueiro CA, Fortunato E.  2017.  Advances in electrochemically active bacteria: Physiology and ecology. Handbook of Online and Near-real-time Methods in Microbiology. : CRC Press Abstract

The discovery of microorganisms with the ability of Extracellular Electron Transfer (EET), nearly three decades ago, sparked interest due to their ability to be used in diverse applications that can range from bioremediation to electricity production in Microbial Fuel Cells (MFC). Microbial respiration is based on electron transfer from a donor to an electron acceptor, through a series of stepwise electron transfer events that generate the necessary metabolic energy. Some microorganisms, such as Pseudomonas species, Shewanella putrefaciens or Geothrix fermentans are able to produce electrochemical mediators to increase the EET. The mechanical stability of the biofilm is provided by the biofilm matrix, a hydrated extracellular polymeric matrix that encases the biofilm cells. The biofilm matrix could potentially offer a resistance pathway to EET unless bacteria develop strategies to increase its conductivity. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications.

Marques, AC, Santos L, Costa MN, Dantas JM, Duarte P, Gonçalves A, Martins R, Salgueiro CA, Fortunato E.  2015.  Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Sci. Rep. 5(9910) AbstractWebsite

Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.