Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Dhadge, VL, Morgado PI, Freitas F, Reis MA, Azevedo AM, Aires-Barros R, Roque ACA.  2014.  An extracellular polymer at the interface of magnetic bioseparations. Journal of the Royal Society Interface. 11(100):20140743. AbstractWebsite

FucoPol, a fucose-containing extracellular polysaccharide (EPS) produced by bacterium Enterobacter A47 using glycerol as the carbon source, was employed as a coating material for magnetic particles (MPs), which were subsequently functionalized with an artificial ligand for the capture of antibodies. The performance of the modified MPs (MP–EPS-22/8) for antibody purification was investigated using direct magnetic separation alone or combined with an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and dextran. In direct magnetic capturing, and using pure protein solutions of human immunoglobulin G (hIgG) and bovine serum albumin (BSA), MP–EPS-22/8 bound 120 mg hIgG g−1 MPs, whereas with BSA only 10 ± 2 mg BSA g−1 MPs was achieved. The hybrid process combining both the ATPS and magnetic capturing leads to a good performance for partitioning of hIgG in the desired phase as well as recovery by the magnetic separator. The MPs were able to bind 145 mg of hIgG g−1 of particles which is quite high when compared with direct magnetic separation. The theoretical maximum capacity was calculated to be 410 ± 15 mg hIgG adsorbed g−1 MPs with a binding affinity constant of 4.3 × 104 M−1. In multiple extraction steps, the MPs bound 92% of loaded hIgG with a final purity level of 98.5%. The MPs could easily be regenerated, recycled and re-used for five cycles with only minor loss of capacity. FucoPol coating allowed both electrostatic and hydrophobic interactions with the antibody contributing to enhance the specificity for the targeted products.

E
Esteves C, Santos GMC, Alves C, Palma S, Porteira AR, Filho J, HA C, Alves VD, Faustino BMM, Ferreira I, Gamboa H, Roque ACA.  2019.  Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio. 1:-. AbstractPDFWebsite

Artificial olfaction is a fast-growing field aiming to mimic natural olfactory systems. Olfactory systems rely on a first step of molecular recognition in which volatile organic compounds (VOCs) bind to an array of specialized olfactory proteins. This results in electrical signals transduced to the brain where pattern recognition is performed. An efficient approach in artificial olfaction combines gas-sensitive materials with dedicated signal processing and classification tools. In this work, films of gelatin hybrid gels with a single composition that change their optical properties upon binding to VOCs were studied as gas-sensing materials in a custom-built electronic nose. The effect of films thickness was studied by acquiring signals from gelatin hybrid gel films with thicknesses between 15 and 90 μm when exposed to 11 distinct VOCs. Several features were extracted from the signals obtained and then used to implement a dedicated automatic classifier based on support vector machines for data processing. As an optical signature could be associated to each VOC, the developed algorithms classified 11 distinct VOCs with high accuracy and precision (higher than 98%), in particular when using optical signals from a single film composition with 30 μm thickness. This shows an unprecedented example of soft matter in artificial olfaction, in which a single gelatin hybrid gel, and not an array of sensing materials, can provide enough information to accurately classify VOCs with small structural and functional differences.

F
Fernandes, CSM, Teixeira GDG, Iranzo O, Roque ACA.  2018.  Engineered protein variants for bioconjugation. Biomedical Applications of Functionalized Nanomaterials - Concepts, Development and Clinical Translation. (Sarmento, Bruno, Jose Das Neves, Eds.).: Elsevier
P
Palma, SICJ, Esteves C, Pádua AC, Alves CM, Santos GMC, Costa HMA, Dionisio M, Gamboa H, Gruber J, Roque ACA.  2019.  Enhanced gas sensing with soft functional materials, May 2019. ISOEN 2019 - 18th International Symposium on Olfaction and Electronic Nose, Proceedings. , Fukuoka, Japan: Institute of Electrical and Electronics Engineers Inc. AbstractPDF

The materials described in this work result from the selfassembly of liquid crystals and ionic liquids into droplets,
stabilized within a biopolymeric matrix. These systems are
extremely versatile gels, in terms of composition, and offer
potential for fine tuning of both structure and function, as
each individual component can be varied. Here, the
characterization and application of these gels as sensing thin
films in gas sensor devices is presented. The unique
supramolecular structure of the gels is explored for molecular
recognition of volatile organic compounds (VOCs) by
employing gels with distinct formulations to yield
combinatorial optical and electrical responses used in the
distinction and identification of VOCs.

Palma, SI, Marciello M, Carvalho A, Veintemillas-Verdaguer S, Morales PM, Roque ACA.  2015.  Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. Journal of Colloid & Interface Science. 437(1):147–155. AbstractWebsite

Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

Pina, AS, Batalha ÍL, Fernandes CSM, Aoki MA, Roque ACA.  2014.  Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Research. 66:160–168. AbstractWebsite

Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical–chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 μM for both strains with a visible bactericidal effect.