Pádua, AC, Palma S, Gruber J, Gamboa H, Roque ACA.
2018.
Design and Evolution of an Opto-electronic Device for VOCs Detection. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies. :48-55.
AbstractElectronic noses (E-noses) are devices capable of detecting and identifying Volatile Organic Compounds (VOCs) in a simple and fast method. In this work, we present the development process of an opto-electronic device based on sensing films that have unique stimuli-responsive properties, altering their optical and electrical properties, when interacting with VOCs. This interaction results in optical and electrical signals that can be collected, and further processed and analysed. Two versions of the device were designed and assembled. E-nose V1 is an optical device, and E-nose V2 is a hybrid opto-electronic device. Both E-noses architectures include a delivery system, a detection chamber, and a transduction system. After the validation of the E-nose V1 prototype, the E-nose V2 was implemented, resulting in an easy-to-handle, miniaturized and stable device. Results from E-nose V2 indicated optical signals reproducibility, and the possibility of coupling the electrical signals to the opt ical response for VOCs sensing.
dos Santos, R, Figueiredo C, Viecinski AC, Pina AS, Barbosa AJM, Roque ACA.
2019.
Designed affinity ligands to capture human serum albumin. Journal of Chromatography A. 1583:88-97.
AbstractHuman serum albumin (HSA) in an important therapeutic agent and disease biomarker, with an increasing market demand. By proteins and drugs that bind to HSA as inspiration, a combinatorial library of 64 triazine-based ligands was rationally designed and screened for HSA binding at physiological conditions. Two triazine-based lead ligands (A3A2 and A6A5), presenting more than 50% HSA bound and high enrichment factors, were selected for further studies. Binding and elution conditions for HSA purification from human plasma were optimized for both ligands. The A6A5 adsorbent yielded a purified HSA sample with 98% purity at 100% recovery yield under mild binding and elution conditions.
Ferreira, IMPLVO, Eça R, Pinho O, Tavares P, Pereira A, Roque AC.
2007.
Development and Validation of an HPLC/UV Method for Quantification of Bioactive Peptides in Fermented Milks. Journal of Liquid Chromatography & Related Technologies. 30:2139–2147., Number 14
AbstractThe simultaneous separation and quantification of two casein peptides {(IPP}, {VPP)} presenting potent inhibitory activity of angiotensin-converting-enzyme {(ACE)} and casein in fermented milks was developed. Gradient elution was carried out at a flow-rate of 1 {mL/min}, using a mixture of two solvents. Solvent A was 0.1% {TFA} in water and solvent B was acetonitrile-water-trifluoracetic acid 95:5:0.1. The effluent was monitored by {UV} detector at 214 nm. Calibration curves were constructed in the interval of 0.01-1.0 {mg/mL} for {VPP}, 0.005-1.0 {mg/mL} for {IPP}, and 0.05-3.0 {mg/mL} for casein. R2 invariably exceeded 0.999. The detection limits were 0.004 for {VPP}, 0.002 {mg/mL} for {IPP}, and 0.02 {mg/mL} for casein. Repeatability of the method was evaluated by six consecutive injections of two standard solutions containing {VPP}, {IPP}, and casein. The {RSD} values for concentration were all below 5.08%. Recovery studies were carried out to determine the accuracy of the method. Recoveries ranged between 88 and 98.2%. The methodology was applied, not only, for the monitorization of {VPP}, {IPP}, and casein in commercial fermented milks labeled as presenting antihypertensive properties, but also, in milk with different degrees of fermentation by L. Helveticus, and in other commercial functional fermented milks, such as, those presenting cholesterol lowering properties.
Santana, SDF, Dhadge VL, Roque ACA.
2012.
Dextran-Coated Magnetic Supports Modified with a Biomimetic Ligand for IgG Purification. ACS Applied Materials and Interfaces. 4(11):5907–5914.
Abstractextran-coated iron oxide magnetic particles modified with ligand 22/8, a protein A mimetic ligand, were prepared and assessed for IgG purification. Dextran was chosen as the agent to modify the surface of magnetic particles by presenting a negligible level of nonspecific adsorption. For the functionalization of the particles with the affinity ligand toward antibodies, three methods have been explored. The optimum coupling method yielded a theoretical maximum capacity for human IgG calculated as 568 ± 33 mg/g and a binding affinity constant of 7.7 × 104 M–1. Regeneration, recycle and reuse of particles was also highly successful for five cycles with minor loss of capacity. Moreover, this support presented specificity and effectiveness for IgG adsorption and elution at pH 11 directly from crude extracts with a final purity of 95% in the eluted fraction.