Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G [H] I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
Hussain, A, Pina AS, Roque ACA.  2009.  Bio-recognition and detection using liquid crystals. Biosensors and Bioelectronics. 25:1–8., Number 1 AbstractWebsite

Liquid crystals {(LCs)} are used extensively by the electronics industry as display devices. Advances in the understanding of the liquid crystalline phase and the chemistry therein lead to the development of {LC} exhibiting faster switching speed with greater twist angle. This in turn lead to the emergence of liquid crystal displays, rendering dial-and-needle based displays (such as those used in various meters) and cathode ray tubes obsolete. In this article, we review the history of {LC} and their emergence as an invaluable material for display devices and the more recent discovery of their use as sensing elements in biosensors. This new application of {LC} as tools in the development of fast and simple biosensors is envisaged to gain more importance in the foreseeable future.

Hussain, A, Semeano ATS, Palma SICJ, Pina AS, Almeida J, Medrado BF, Pádua ACCS, Carvalho AL, Dionísio M, Li RWC, Gamboa H, Ulijn RV, Gruber J, Roque ACA.  2017.  Tunable Gas Sensing Gels by Cooperative Assembly. Advanced Functional Materials. 1700803:1–9. AbstractPDFWebsite

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.