Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Delgado-Lima, Ana, João Paulo Borges, Isabel Ferreira, and Ana Machado. "Fluorescent and conductive cellulose acetate-based membranes with porphyrins." Materials today Communications 11 (2017): 26-37. AbstractWebsite

The unique properties of electrospun nanofibers combined with functional compounds allow the preparation of novelty materials that can be employed in a wide range of applications. Among a vast number of polymers, Cellulose Acetate (CA) it is considered easy to electrospun and it was employed as the polymeric matrix, where free and iridium-porphyrins were incorporated. Two different solvent systems were employed according to the porphyrin used, and the best dispersion level on both the electrospun solution and the membranes, was achieved with the iridium porphyrin. The nanofibers with this porphyrin also exhibited electrical properties, while the fluorescence was quenched by the presence of specific axial ligands.

Echeverria, Coro, Susete N. Fernandes, Maria Helena Godinho, João Borges Borges, and Paula I. P. Soares. "Functional Stimuli-Responsive Gels: Hydrogels and Microgels." Gels 4 (2018): 54. AbstractWebsite

One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli “smart” systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.