Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
Perdigão, Patrícia, Bruno Faustino, Jaime Faria, João Paulo Canejo, João Borges Borges, Isabel Ferreira, and Ana Catarina Baptista. "Conductive Electrospun Polyaniline/Polyvinylpyrrolidone Nanofibers: Electrical and Morphological Characterization of New Yarns for Electronic Textiles." Fibers 8 (2020): 24. AbstractWebsite

Advanced functionalities textiles embedding electronic fibers, yarns and fabrics are a demand for innovative smart cloths. Conductive electrospun membranes and yarns based on polyaniline/polyvinylpyrrolidone (PANI/PVP) were investigated using the chemical modification of PANI instead of using conventional coating processes as in-situ polymerization. PANI was synthesized from the aniline monomer and the influence of the oxidant-to-monomer ratio on electrical conductivity was studied. The optimized conductivity of pellets made with pressed PANI powders was 21 S·cm−1. Yarns were then prepared from the t-Boc-PANI/PVP electrospun membranes followed by PANI protonation to enhance their electrical properties. Using this methodology, electrospun membranes and yarns were produced with electrical conductivities of 1.7 × 10−2 and 4.1 × 10−4 S·cm−1.

Pimenta, Andreia F. R., Ana Catarina Baptista, Tânia Carvalho, Pedro Brogueira, Nuno Lourenço, Carlos Afonso, Susana Barreiros, Pedro Vidinha, and João Paulo Borges. "Electrospinning of Ion Jelly fibers." Materials Letters 83 (2012): 161-164. AbstractWebsite

Ion Jelly materials combine the chemical versatility and conductivity of an ionic liquid (IL) with the morphological versatility of a biopolymer (gelatin). They exhibit very interesting properties, such as conductivities up to 10− 4 S cm− 1, and high thermostability up to 180 °C, and have been used successfully to design electrochromic windows. In this work we report on the preparation of Ion Jelly fibers through electrospinning in order to obtain high surface area conductive materials. We have used the IL 1-(2-hydroxyethyl)-3-methyl-imidazolium tetrafluoroborate ([C2OHmim]BF4), which exhibits conveniently high ionic conductivity (over 10− 3 S cm− 1) and electrochemical stability (electrochemical window over 6.0 V). The morphology of the obtained fibers was quantified using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). We found that on average the effect of the IL on fiber diameter differs for lower and higher IL concentrations and that this effect was correlated with the initial conductivity and viscosity of Ion Jelly electrospinning solution. Moreover we also found that conductivities of Ion Jelly fibers are of the same order of magnitude as the conductivities of Ion Jelly dense films (~ 10− 4 S cm− 1). To the best of our knowledge, this is the first report on the incorporation of an IL into gelatin fibers using electrospinning. This opens up new opportunities for the application of gelatin fibers in electrochemical and biomedical devices.

Prabaharan, Mani, João Paulo Borges, Maria Helena Godinho, and João F. Mano. "Liquid Crystalline Behaviour of Chitosan in Formic, Acetic, Monochloroacetic Acid Solutions." Materials Science Forum 514-516 (2006): 1010-1014. AbstractWebsite

The objective of this work was to prepare polysaccharide-based gels exhibiting liquid crystalline properties. Such systems may be used in some optical or in biomedical applications, where biodegradability is required. Chitosan is a derivative of chitin, widely used in a series of medical applications. Due to its rigid structure, chitosan or its derivatives may show lyotropic mesophases in certain conditions. In this work, chitosan solutions were prepared by mixing completely the polysaccharide with different concentration of formic, acetic and monochloroacetic acids at room temperature. X-ray diffraction patterns of the gels did not show the existence of a crystalline structure. Finger-prints texture observed by polarised optical microscopy was attributed to a cholesteric liquid crystalline phase that usually develops in concentrated solutions. Values of the nematic chiral pitch (P) were determined in function of acid solution concentration. The critical concentrations (C*) to form a lyotropic liquid crystalline phase in formic, acetic and monochloroacetic acids were determined, and the obtained values were confronted with the expected critical concentration based on the Flory formalism. The critical concentration values were found to be dependent upon the acid used.

Prezas, Pedro, Bruno Melo, Luís Costa, Manuel Valente, Maria Carmo Lança, José Ventura, Luís Pinto, and Manuel Prezas. "TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics." Applied Surface Science 424 (2017): 28-38. AbstractWebsite

Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization.
In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500 °C under a DC electric field with a magnitude of 5 kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5 kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements.
The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.