Export 528 results:
Sort by: Author Title Type [ Year  (Asc)]
Redox thermodynamics of low-potential iron-sulfur proteins, Battistuzzi, G., D'Onofrio M., Borsari M., Sola M., Macedo A. L., Moura J. J., and Rodrigues P. , J Biol Inorg Chem, Dec, Volume 5, Number 6, p.748-60, (2000) AbstractWebsite

The enthalpy and entropy changes associated with protein reduction (deltaHdegrees,(rc), deltaSdegrees,(rc)) were determined for a number of low-potential iron-sulfur proteins through variable temperature direct electrochemical experiments. These data add to previous estimates making available, overall, the reduction thermodynamics for twenty species from various sources containing all the different types of metal centers. These parameters are discussed with reference to structural data and calculated electrostatic metal-environment interaction energies, and redox properties of model complexes. This work, which is the first systematic investigation on the reduction thermodynamics of Fe-S proteins, contributes to the comprehension of the determinants of the differences in reduction potential among different protein families within a novel perspective. Moreover, comparison with analogous data obtained previously for electron transport (ET) metalloproteins with positive reduction potentials, i.e., cytochromes c, blue copper proteins, and HiPIPs, helps our understanding of the factors controlling the reduction potential in ET species containing different metal cofactors. The main results of this work can be summarized as follows.

Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur, Brown, K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J. J., Moura I., Tegoni M., and Cambillau C. , J Biol Chem, Dec 29, Volume 275, Number 52, p.41133-6, (2000) AbstractWebsite

Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.

Evidence for antisymmetric exchange in cuboidal 3Fe-4S (+) clusters, Sanakis, Y., Macedo A. L., Moura I., Moura J. J. G., Papaefthymiou V., and Munck E. , Journal of the American Chemical Society, Dec 6, Volume 122, Number 48, p.11855-11863, (2000) AbstractWebsite

Iron-sulfur clusters with [3Fe-4S] cores are widely distributed in biological systems. In the oxidized state, designated [3Fe-4S](+), these electron-transfer agents have an electronic ground state with S = 1/2, and; they exhibit EPR signals centered at g = 2.01. It has been established by Mossbauer spectroscopy that the three iron sites of the cluster are high-spin Fe3+; and the general properties of the S = 1/2 ground state have been described with the exchange Hamiltonian H-exch = J(12)S(1).S-2 + J(23)S(2).S-3 + J(13)S(1).S-3 Some [3Fe-4S](+) clusters (type 1) have their g-values confined to the range between g = 2.03 and 2.00 while others (type 2) exhibit a continuous distribution of g-values down to g approximate to 1.85. Despite considerable efforts in various laboratories no model has emerged that explains the g-values of type 2 clusters. The 4.2 K spectra of all [3Fe-4S](+) clusters have broad features,which have been simulated in the past by using Fe-57 magnetic hyperfine tensors with anisotropies that are unusually large for high-spin feme sites. It is proposed here that antisymmetric exchange, H-AS = d.(S-1 x S-2 + S-2 x S-3 + S-3 x S-1), is the cause of the g-value shifts in type 2 clusters. We have been able to fit the EPR and Mossbauer spectra of the 3Fe clusters of beef heart aconitase and Desulfovibrio gigas ferredoxin II by using antisymmetric exchange in combination with distributed exchange coupling constants J(12), J(13), and J(23) (J-strain). While antisymmetric exchange is negligible for aconitase (which has a type 1 cluster), fits of the ferredoxin II spectra require \d\ approximate to 0.4 cm(-1). Our studies show that the data of both proteins can lie fit using the same isotropic Fe-57 magnetic hyperfine coupling constant for th three cluster sites, namely a -18.0 MHz for aconitase and a = -18.5 MHz for the D. gigas ferredoxin. The effects of antisymmetric exchange and J-strain on the Mossbauer and EPR spectra are discussed.

Crystallization and preliminary X-ray analysis of a membrane-bound nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Dias, J. M., Cunha C. A., Teixeira S., Almeida G., Costa C., Lampreia J., Moura J. J., Moura I., and Romao M. J. , Acta Crystallogr D Biol Crystallogr, Feb, Volume 56, Number Pt 2, p.215-7, (2000) AbstractWebsite

Nitrite reductase from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is a multihaem (type c) membrane-bound enzyme that catalyzes the dissimilatory conversion of nitrite to ammonia. Crystals of the oxidized form of this enzyme were obtained using PEG and CaCl(2) as precipitants in the presence of 3--(decylmethylammonium)propane-1-sulfonate and belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 78.94, b = 104.59, c = 143.18 A. A complete data set to 2.30 A resolution was collected using synchrotron radiation at the ESRF. However, the crystals may diffract to beyond 1.7 A and high-resolution data will be collected in the near future.

Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774, Duarte, R. O., Archer M., Dias J. M., Bursakov S., Huber R., Moura I., Romao M. J., and Moura J. J. , Biochem Biophys Res Commun, Feb 24, Volume 268, Number 3, p.745-9, (2000) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romao, M. J., Knablein, J., Huber, R., and Moura, J. J. G. (1997) Prog. Biophys. Mol. Biol. 68, 121-144). The enzyme was purified to homogeneity from extracts of Desulfovibrio desulfuricans (Dd) ATCC 27774, a sulfate reducer that can use sulfate or nitrate as terminal respiratory substrates. The protein (AORDd) is described as a homodimer (monomer, circa 100 kDa), contains a Mo-MCD pterin, 2 x [2Fe-2S] clusters, and lacks a flavin group. Visible and EPR spectroscopies indicate a close similarity with the AOR purified from Desulfovibrio gigas (Dg) (Barata, B. A. S., LeGall, J., and Moura, J. J. G. (1993) Biochemistry 32, 11559-11568). Activity and substrate specificity for different aldehydes were determined. EPR studies were performed in native and reduced states of the enzyme and after treatment with ethylene glycol and dithiothreitol. The AORDd was crystallized using ammonium sulfate as precipitant and the crystals belong to the space group P6(1)22, with unit cell dimensions a = b = 156.4 and c = 177.1 A. These crystals diffract to beyond 2.5 A resolution and a full data set was measured on a rotating anode generator. The data were used to solve the structure by Patterson Search methods, using the model of AORDg.

Structural model of the Fe-hydrogenase/cytochrome c553 complex combining transverse relaxation-optimized spectroscopy experiments and soft docking calculations, Morelli, X., Czjzek M., Hatchikian C. E., Bornet O., Fontecilla-Camps J. C., Palma N. P., Moura J. J., and Guerlesquin F. , J Biol Chem, Jul 28, Volume 275, Number 30, p.23204-10, (2000) AbstractWebsite

Fe-hydrogenase is a 54-kDa iron-sulfur enzyme essential for hydrogen cycling in sulfate-reducing bacteria. The x-ray structure of Desulfovibrio desulfuricans Fe-hydrogenase has recently been solved, but structural information on the recognition of its redox partners is essential to understand the structure-function relationships of the enzyme. In the present work, we have obtained a structural model of the complex of Fe-hydrogenase with its redox partner, the cytochrome c(553), combining docking calculations and NMR experiments. The putative models of the complex demonstrate that the small subunit of the hydrogenase has an important role in the complex formation with the redox partner; 50% of the interacting site on the hydrogenase involves the small subunit. The closest contact between the redox centers is observed between Cys-38, a ligand of the distal cluster of the hydrogenase and Cys-10, a ligand of the heme in the cytochrome. The electron pathway from the distal cluster of the Fe-hydrogenase to the heme of cytochrome c(553) was investigated using the software Greenpath and indicates that the observed cysteine/cysteine contact has an essential role. The spatial arrangement of the residues on the interface of the complex is very similar to that already described in the ferredoxin-cytochrome c(553) complex, which therefore, is a very good model for the interacting domain of the Fe-hydrogenase-cytochrome c(553).

Using cytochrome c(3) to make selenium nanowires, Abdelouas, A., Gong W. L., Lutze W., Shelnutt J. A., Franco R., and Moura I. , Chemistry of Materials, Jun, Volume 12, Number 6, p.1510-+, (2000) AbstractWebsite

We report on a new method to make nanostructures in aqueous solution at room temperature. We used the protein cytochrome c(3) to catalyze reduction of selenate (SeO42-) to selenium Se-0 by dithionite. Reduction was instantaneous. After a week spherical nanoparticles of red Se-0 (about 50 nm diameter) precipitated, followed by self-assembling into crystalline nanowires, typically 1 mu m long. The nanowires were composed of one strand of spherical particles; thicker strands contained several nanoparticles in parallel.

BiGGER: a new (soft) docking algorithm for predicting protein interactions, Palma, P. N., Krippahl L., Wampler J. E., and Moura J. J. , Proteins, Jun 1, Volume 39, Number 4, p.372-84, (2000) AbstractWebsite

A new computationally efficient and automated "soft docking" algorithm is described to assist the prediction of the mode of binding between two proteins, using the three-dimensional structures of the unbound molecules. The method is implemented in a software package called BiGGER (Bimolecular Complex Generation with Global Evaluation and Ranking) and works in two sequential steps: first, the complete 6-dimensional binding spaces of both molecules is systematically searched. A population of candidate protein-protein docked geometries is thus generated and selected on the basis of the geometric complementarity and amino acid pairwise affinities between the two molecular surfaces. Most of the conformational changes observed during protein association are treated in an implicit way and test results are equally satisfactory, regardless of starting from the bound or the unbound forms of known structures of the interacting proteins. In contrast to other methods, the entire molecular surfaces are searched during the simulation, using absolutely no additional information regarding the binding sites. In a second step, an interaction scoring function is used to rank the putative docked structures. The function incorporates interaction terms that are thought to be relevant to the stabilization of protein complexes. These include: geometric complementarity of the surfaces, explicit electrostatic interactions, desolvation energy, and pairwise propensities of the amino acid side chains to contact across the molecular interface. The relative functional contribution of each of these interaction terms to the global scoring function has been empirically adjusted through a neural network optimizer using a learning set of 25 protein-protein complexes of known crystallographic structures. In 22 out of 25 protein-protein complexes tested, near-native docked geometries were found with C(alpha) RMS deviations < or =4.0 A from the experimental structures, of which 14 were found within the 20 top ranking solutions. The program works on widely available personal computers and takes 2 to 8 hours of CPU time to run any of the docking tests herein presented. Finally, the value and limitations of the method for the study of macromolecular interactions, not yet revealed by experimental techniques, are discussed.

A novel type of catalytic copper cluster in nitrous oxide reductase, Brown, K., Tegoni M., Prudencio M., Pereira A. S., Besson S., Moura J. J., Moura I., and Cambillau C. , Nat Struct Biol, Mar, Volume 7, Number 3, p.191-5, (2000) AbstractWebsite

Nitrous oxide (N20) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N20 elimination from the biosphere, N20 reductases catalyze the two-electron reduction of N20 to N2. These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N20 reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 A. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N20 binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.

Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II, Caldeira, J., Belle V., Asso M., Guigliarelli B., Moura I., Moura J. J., and Bertrand P. , Biochemistry, Mar 14, Volume 39, Number 10, p.2700-7, (2000) AbstractWebsite

Molybdoenzymes of the xanthine oxidase family contain two [2Fe-2S](1+,2+) clusters that are bound to the protein by very different cysteine motifs. In the X-ray crystal structure of Desulfovibrio gigas aldehyde oxidoreductase, the cluster ligated by a ferredoxin-type motif is close to the protein surface, whereas that ligated by an unusual cysteine motif is in contact with the molybdopterin [Romao, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R. (1995) Science 270, 1170-1176]. These two clusters display distinct electron paramagnetic resonance (EPR) signals: the less anisotropic one, called signal I, is generally similar to the g(av) approximately 1.96-type signals given by ferredoxins, whereas signal II often exhibits anomalous properties such as very large g values, broad lines, and very fast relaxation properties. A detailed comparison of the temperature dependence of the spin-lattice relaxation time and of the intensity of these signals in D. gigas aldehyde oxidoreductase and in milk xanthine oxidase strongly suggests that the peculiar EPR properties of signal II arise from the presence of low-lying excited levels reflecting significant double exchange interactions. The issue raised by the assignment of signals I and II to the two [2Fe-2S](1+) clusters was solved by using the EPR signal of the Mo(V) center as a probe. The temperature dependence of this signal could be quantitatively reproduced by assuming that the Mo(V) center is coupled to the cluster giving signal I in xanthine oxidase as well as in D. gigas aldehyde oxidoreductase. This demonstrates unambiguously that, in both enzymes, signal I arises from the center which is closest to the molybdenum cofactor.

Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553-ferredoxin complex, Morelli, X., Dolla A., Czjzek M., Palma P. N., Blasco F., Krippahl L., Moura J. J., and Guerlesquin F. , Biochemistry, Mar 14, Volume 39, Number 10, p.2530-7, (2000) AbstractWebsite

The combination of docking algorithms with NMR data has been developed extensively for the studies of protein-ligand interactions. However, to extend this development for the studies of protein-protein interactions, the intermolecular NOE constraints, which are needed, are more difficult to access. In the present work, we describe a new approach that combines an ab initio docking calculation and the mapping of an interaction site using chemical shift variation analysis. The cytochrome c553-ferredoxin complex is used as a model of numerous electron-transfer complexes. The 15N-labeling of both molecules has been obtained, and the mapping of the interacting site on each partner, respectively, has been done using HSQC experiments. 1H and 15N chemical shift analysis defines the area of both molecules involved in the recognition interface. Models of the complex were generated by an ab initio docking software, the BiGGER program (bimolecular complex generation with global evaluation and ranking). This program generates a population of protein-protein docked geometries ranked by a scoring function, combining relevant stabilization parameters such as geometric complementarity surfaces, electrostatic interactions, desolvation energy, and pairwise affinities of amino acid side chains. We have implemented a new module that includes experimental input (here, NMR mapping of the interacting site) as a filter to select the accurate models. Final structures were energy minimized using the X-PLOR software and then analyzed. The best solution has an interface area (1037.4 A2) falling close to the range of generally observed recognition interfaces, with a distance of 10.0 A between the redox centers.

Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774, Rebelo, J., Macieira S., Dias J. M., Huber R., Ascenso C. S., Rusnak F., Moura J. J., Moura I., and Romao M. J. , J Mol Biol, Mar 17, Volume 297, Number 1, p.135-46, (2000) AbstractWebsite

The aldehyde oxidoreductase (MOD) isolated from the sulfate reducer Desulfovibrio desulfuricans (ATCC 27774) is a member of the xanthine oxidase family of molybdenum-containing enzymes. It has substrate specificity similar to that of the homologous enzyme from Desulfovibrio gigas (MOP) and the primary sequences from both enzymes show 68 % identity. The enzyme was crystallized in space group P6(1)22, with unit cell dimensions of a=b=156.4 A and c=177.1 A, and diffraction data were obtained to beyond 2.8 A. The crystal structure was solved by Patterson search techniques using the coordinates of the D. gigas enzyme. The overall fold of the D. desulfuricans enzyme is very similar to MOP and the few differences are mapped to exposed regions of the molecule. This is reflected in the electrostatic potential surfaces of both homologous enzymes, one exception being the surface potential in a region identifiable as the putative docking site of the physiological electron acceptor. Other essential features of the MOP structure, such as residues of the active-site cavity, are basically conserved in MOD. Two mutations are located in the pocket bearing a chain of catalytically relevant water molecules. As deduced from this work, both these enzymes are very closely related in terms of their sequences as well as 3D structures. The comparison allowed confirmation and establishment of features that are essential for their function; namely, conserved residues in the active-site, catalytically relevant water molecules and recognition of the physiological electron acceptor docking site.

Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase, Jovanovic, T., Ascenso C., Hazlett K. R., Sikkink R., Krebs C., Litwiller R., Benson L. M., Moura I., Moura J. J., Radolf J. D., Huynh B. H., Naylor S., and Rusnak F. , J Biol Chem, Sep 15, Volume 275, Number 37, p.28439-48, (2000) AbstractWebsite

Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mossbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.

Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): insights into isoniazid activation, Wengenack, N. L., Lopes H., Kennedy M. J., Tavares P., Pereira A. S., Moura I., Moura J. J., and Rusnak F. , Biochemistry, Sep 19, Volume 39, Number 37, p.11508-13, (2000) AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG.

Dissimilatory Nitrate Reductase, Romão, M. J., Dias J. M., and Moura I. , Handbook of Metalloproteins , p.1075-1085, (2001) Abstract
Electrochemical studies of rubredoxin from Desulfovibrio vulgaris at modified electrodes, Correia dos Santos, M. M., Paes de Sousa P. M., Simões Gonçalves M. L., Ascenso C., Moura I., and Moura J. J. G. , Journal of Electroanalytical Chemistry, Volume 501, Number 1–2, p.173-179, (2001) AbstractWebsite
Proteómica: a Interface entre a Biologia Molecular e a Biochemistry de Proteínas, Almeida, G., Rodrigues C., and Lampreia J. , Bol. Soc. Port. Química, Volume 82, p.49-56, (2001) Abstract
Structural aspects of denitrifying enzymes, Moura, I., and Moura J. J. , Curr Opin Chem Biol, Apr, Volume 5, Number 2, p.168-75, (2001) AbstractWebsite

The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.

Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography, Raaijmakers, H., Teixeira S., Dias J. M., Almendra M. J., Brondino C. D., Moura I., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Apr, Volume 6, Number 4, p.398-404, (2001) AbstractWebsite

The tungsten-containing formate dehydrogenase (W-FDH) isolated from Desulfovibrio gigas has been crystallized in space group P2(1), with cell parameters a = 73.8 A, b = 111.3 A, c = 156.6 A and beta = 93.7 degrees. These crystals diffract to beyond 2.0 A on a synchrotron radiation source. W-FDH is a heterodimer (92 kDa and 29 kDa subunits) and two W-FDH molecules are present in the asymmetric unit. Although a molecular replacement solution was found using the periplasmic nitrate reductase as a search model, additional phasing information was needed. A multiple-wavelength anomalous dispersion (MAD) dataset was collected at the W- and Fe-edges, at four different wavelengths. Anomalous and dispersive difference data allowed us to unambiguously identify the metal atoms bound to W-FDH as one W atom with a Se-cysteine ligand as well as one [4Fe-4S] cluster in the 92 kDa subunit, and three additional [4Fe-4S] centers in the smaller 29 kDa subunit. The D. gigas W-FDH was previously characterized based on metal analysis and spectroscopic data. One W atom was predicted to be bound to two molybdopterin guanine dinucleotide (MGD) pterin cofactors and two [4Fe-4S] centers were proposed to be present. The crystallographic data now reported reveal a selenium atom (as a Se-cysteine) coordinating to the W site, as well as two extra [4Fe-4S] clusters not anticipated before. The EPR data were re-evaluated in the light of these new results.

Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate, Rodrigues, C. M., Sola S., Brito M. A., Brondino C. D., Brites D., and Moura J. J. , Biochem Biophys Res Commun, Feb 23, Volume 281, Number 2, p.468-74, (2001) AbstractWebsite

Mitochondria have been implicated in the cytotoxicity of amyloid beta-peptide (A beta), which accumulates as senile plaques in the brain of Alzheimer's disease patients. Tauroursodeoxycholate (TUDC) modulates cell death, in part, by preventing mitochondrial membrane perturbation. Using electron paramagnetic resonance spectroscopy analysis of isolated mitochondria, we tested the hypothesis that A beta acts locally in mitochondrial membranes to induce oxidative injury, leading to increased membrane permeability and subsequent release of caspase-activating factors. Further, we intended to determine the role of TUDC at preventing A beta-induced mitochondrial membrane dysfunction. The results demonstrate oxidative injury of mitochondrial membranes during exposure to A beta and reveal profound structural changes, including modified membrane lipid polarity and disrupted protein mobility. Cytochrome c is released from the intermembrane space of mitochondria as a consequence of increased membrane permeability. TUDC, but not cyclosporine A, almost completely abrogated A beta-induced perturbation of mitochondrial membrane structure. We conclude that A beta directly induces cytochrome c release from mitochondria through a mechanism that is accompanied by profound effects on mitochondrial membrane redox status, lipid polarity, and protein order. TUDC can directly suppress A beta-induced disruption of the mitochondrial membrane structure, suggesting a neuroprotective role for this bile salt.

Kinetics of inter- and intramolecular electron transfer of Pseudomonas nautica cytochrome cd1 nitrite reductase: regulation of the NO-bound end product, Lopes, H., Besson S., Moura I., and Moura J. J. , J Biol Inorg Chem, Jan, Volume 6, Number 1, p.55-62, (2001) AbstractWebsite

The intermolecular electron transfer kinetics between nitrite reductase (NiR, cytochrome cd1) isolated from Pseudomonas nautica and three cytochromes c isolated from the same strain, as well as the intramolecular electron transfer between NiR heme c and NiR heme d1, were investigated by cyclic voltammetry. All cytochromes (cytochrome c552, cytochrome c553 and cytochrome C553(548)) exhibited well-behaved electrochemistry. The individual diffusion coefficients and mid-point redox potentials were determined. Under the experimental conditions, only cytochrome c552 established a rapid electron transfer with NiR. At acidic pH, the intermolecular electron transfer (cytochrome c(552red)-->NiR heme cox) is a second-order reaction with a rate constant (k2) of 4.1+/-0.1x10(5) M(-1) s(-1) (pH=6.3 and 100 mM NaCl). Under these conditions, the intermolecular reaction represents the rate-limiting step. A minimum estimate of 33 s(-1) could be determined for the first-order rate constant (k1) of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox. The pH dependence of k2 values was investigated at pH values ranging from 5.8 to 8.0. When the pH is progressively shifted towards basic values, the rate constant of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox decreases gradually to a point where it becomes rate limiting. At pH 8.0 we determined a value of 1.4+/-0.7 s(-1), corresponding to a k2 value of 2.2+/-1.1x10(4) M(-1) s(-1) for the intermolecular step. The physiological relevance of these results is discussed with a particular emphasis on the proposed mechanism of "dead-end product" formation.

Calcium-dependent conformation of a heme and fingerprint peptide of the diheme cytochrome c peroxidase from Paracoccus pantotrophus, Pauleta, S. R., Lu Y., Goodhew C. F., Moura I., Pettigrew G. W., and Shelnutt J. A. , Biochemistry, Jun 5, Volume 40, Number 22, p.6570-6579, (2001) AbstractWebsite

The structural changes in the heme macrocycle and substituents caused by binding of Ca2+ to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca2+-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca2+ or Mg2+. This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca2+ binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca2+ binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.

Effects of bilirubin molecular species on membrane dynamic properties of human erythrocyte membranes: a spin label electron paramagnetic resonance spectroscopy study, Brito, M. A., Brondino C. D., Moura J. J., and Brites D. , Arch Biochem Biophys, Mar 1, Volume 387, Number 1, p.57-65, (2001) AbstractWebsite

Unconjugated bilirubin is a neurotoxic pigment that interacts with membrane lipids. In this study we used electron paramagnetic resonance and the spin labels 5-, 7-, 12-, and 16-doxyl-stearic acid (DSA) to evaluate the depth of the hydrocarbon chain at which interaction of bilirubin preferentially occurs. In addition, we used different pH values to determine the molecular species involved. Resealed right-side-out ghosts were incubated (1-60 min) with bilirubin (3.4-42.8 microM) at pH 7.0, 7.4, and 8.0. Alterations of membrane dynamic properties were maximum after 15 min of incubation with 8.6 microM bilirubin at pH 7.4 and were accompanied by a significant release of phospholipids. Interestingly, concentrations of bilirubin up to 42.8 microM and longer incubations resulted in the elution of cholesterol and further increased that of phospholipids while inducing less structural alterations. Variation of the pH values from 8.0 to 7.4 and 7.0, under conditions of maximum perturbation, led to a change from an increased to a diminished polarity sensed by 5-DSA. Conversely, a progressive enhancement in fluidity was reported by 7-DSA, followed by 12- and 16-DSA. These results indicate that bilirubin while enhancing membrane lipid order at C-5 simultaneously has disordering effects at C-7. Furthermore, recovery of membrane dynamics after 15 min of bilirubin exposure along with the release of lipids is compatible with a membrane adaptive response to the insult. In addition, our data provide evidence that uncharged diacid is the species primarily interacting with the membrane as perturbation is favored by acidosis, a condition frequently associated with hyperbilirubinemia in premature and severely ill infants.

Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase, Pereira, A. S., Tavares P., Moura I., Moura J. J., and Huynh B. H. , J Am Chem Soc, Mar 28, Volume 123, Number 12, p.2771-82, (2001) AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough) is an all Fe-containing hydrogenase. It contains two ferredoxin type [4Fe-4S] clusters, termed the F clusters, and a catalytic H cluster. Recent X-ray crystallographic studies on two Fe hydrogenases revealed that the H cluster is composed of two sub-clusters, a [4Fe-4S] cluster ([4Fe-4S](H)) and a binuclear Fe cluster ([2Fe](H)), bridged by a cysteine sulfur. The aerobically purified D. vulgaris hydrogenase is stable in air. It is inactive and requires reductive activation. Upon reduction, the enzyme becomes sensitive to O(2), indicating that the reductive activation process is irreversible. Previous EPR investigations showed that upon reoxidation (under argon) the H cluster exhibits a rhombic EPR signal that is not seen in the as-purified enzyme, suggesting a conformational change in association with the reductive activation. For the purpose of gaining more information on the electronic properties of this unique H cluster and to understand further the reductive activation process, variable-temperature and variable-field Mossbauer spectroscopy has been used to characterize the Fe-S clusters in D. vulgaris hydrogenase poised at different redox states generated during a reductive titration, and in the CO-reacted enzyme. The data were successfully decomposed into spectral components corresponding to the F and H clusters, and characteristic parameters describing the electronic and magnetic properties of the F and H clusters were obtained. Consistent with the X-ray crystallographic results, the spectra of the H cluster can be understood as originating from an exchange coupled [4Fe-4S]-[2Fe] system. In particular, detailed analysis of the data reveals that the reductive activation begins with reduction of the [4Fe-4S](H) cluster from the 2+ to the 1+ state, followed by transfer of the reducing equivalent from the [4Fe-4S](H) subcluster to the binuclear [2Fe](H) subcluster. The results also reveal that binding of exogenous CO to the H cluster affects significantly the exchange coupling between the [4Fe-4S](H) and the [2Fe](H) subclusters. Implication of such a CO binding effect is discussed.

Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants, Franco, R., Pereira A. S., Tavares P., Mangravita A., Barber M. J., Moura I., and Ferreira G. C. , Biochemical Journal, May 15, Volume 356, p.217-222, (2001) AbstractWebsite

Ferrochelatase (EC is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q Variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical For the catalytic process by controlling the release of the product.