Export 527 results:
Sort by: Author Title Type [ Year  (Desc)]
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009) AbstractWebsite

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

Rubredoxin as a paramagnetic relaxation-inducing probe, Almeida, R. M., Pauleta S. R., Moura I., and Moura J. J. , J Inorg Biochem, Sep, Volume 103, Number 9, p.1245-53, (2009) AbstractWebsite

The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.

Decavanadate interactions with actin: cysteine oxidation and vanadyl formation, Ramos, S., Duarte R. O., Moura J. J., and Aureliano M. , Dalton Trans, Oct 14, Number 38, p.7985-94, (2009) AbstractWebsite

Incubation of actin with decavanadate induces cysteine oxidation and oxidovanadium(IV) formation. The studies were performed combining kinetic with spectroscopic (NMR and EPR) methodologies. Although decavanadate is converted to labile oxovanadates, the rate of deoligomerization can be very slow (half-life time of 5.4 h, at 25 degrees C, with a first order kinetics), which effectively allows decavanadate to exist for some time under experimental conditions. It was observed that decavanadate inhibits F-actin-stimulated myosin ATPase activity with an IC(50) of 0.8 microM V(10) species, whereas 50 microM of vanadate or oxidovanadium(IV) only inhibits enzyme activity up to 25%. Moreover, from these three vanadium forms, only decavanadate induces the oxidation of the so called "fast" cysteines (or exposed cysteine, Cys-374) when the enzyme is in the polymerized and active form, F-actin, with an IC(50) of 1 microM V(10) species. Decavanadate exposition to F- and G-actin (monomeric form) promotes vanadate reduction since a typical EPR oxidovanadium(IV) spectrum was observed. Upon observation that V(10) reduces to oxidovanadium(IV), it is proposed that this cation interacts with G-actin (K(d) of 7.48 +/- 1.11 microM), and with F-actin (K(d) = 43.05 +/- 5.34 microM) with 1:1 and 4:1 stoichiometries, respectively, as observed by EPR upon protein titration with oxidovanadium(IV). The interaction of oxidovanadium(IV) with the protein may occur close to the ATP binding site of actin, eventually with lysine-336 and 3 water molecules.

EPR studies of the Mo-enzyme aldehyde oxidoreductase from Desulfovibrio gigas: an application of the Bloch-Wangsness-Redfield theory to a system containing weakly-coupled paramagnetic redox centers with different relaxation rates, Gonzalez, P. J., Barrera G. I., Rizzi A. C., Moura J. J., Passeggi M. C., and Brondino C. D. , J Inorg Biochem, Oct, Volume 103, Number 10, p.1342-6, (2009) AbstractWebsite

Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.

Isolation and characterization of a new Cu-Fe protein from Desulfovibrio aminophilus DSM12254, Rivas, M. G., Mota C. S., Pauleta S. R., Carepo M. S., Folgosa F., Andrade S. L., Fauque G., Pereira A. S., Tavares P., Calvete J. J., Moura I., and Moura J. J. , J Inorg Biochem, Oct, Volume 103, Number 10, p.1314-22, (2009) AbstractWebsite

The isolation and characterization of a new metalloprotein containing Cu and Fe atoms is reported. The as-isolated Cu-Fe protein shows an UV-visible spectrum with absorption bands at 320 nm, 409 nm and 615 nm. Molecular mass of the native protein along with denaturating electrophoresis and mass spectrometry data show that this protein is a multimer consisting of 14+/-1 subunits of 15254.3+/-7.6 Da. Mossbauer spectroscopy data of the as-isolated Cu-Fe protein is consistent with the presence of [2Fe-2S](2+) centers. Data interpretation of the dithionite reduced protein suggest that the metallic cluster could be constituted by two ferromagnetically coupled [2Fe-2S](+) spin delocalized pairs. The biochemical properties of the Cu-Fe protein are similar to the recently reported molybdenum resistance associated protein from Desulfovibrio, D. alaskensis. Furthermore, a BLAST search from the DNA deduced amino acid sequence shows that the Cu-Fe protein has homology with proteins annotated as zinc resistance associated proteins from Desulfovibrio, D. alaskensis, D. vulgaris Hildenborough, D. piger ATCC 29098. These facts suggest a possible role of the Cu-Fe protein in metal tolerance.

A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site, Xie, Xiangjin, Hadt Ryan G., Pauleta Sofia R., Gonzalez Pablo J., Un Sun, Moura Isabel, and Solomon Edward I. , Journal of Inorganic Biochemistry, Oct, Volume 103, Number 10, p.1307-1313, (2009) AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccus pantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 angstrom. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thiorether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond. (C) 2009 Elsevier Inc. All rights reserved.

The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase, Cerqueira, N. M., Gonzalez P. J., Brondino C. D., Romao M. J., Romao C. C., Moura I., and Moura J. J. , J Comput Chem, Nov 30, Volume 30, Number 15, p.2466-84, (2009) AbstractWebsite

The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton-electron transfer stage, where the Mo(V) species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo-dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with Mo(VI) ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl-dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur-based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of Mo(V) species. Mo(VI) intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the Mo(VI) species allow water molecule dissociation, and, the concomitant enzymatic turnover.

Can ultrasonic energy efficiently speed (18)O-labeling of proteins?, Carreira, Ricardo J., Lodeiro Carlos, Diniz Mario S., Moura Isabel, and Capelo Jose L. , Proteomics, Nov, Volume 9, Number 21, p.4974-4977, (2009) AbstractWebsite

We report in this work on the robustness of ultrasonic energy as a tool to speed the isotopic labeling of proteins using the (18)O-decoupling procedure. The first part of the decoupling procedure, comprising protein denaturation, reduction, alkylation and digestion, is done in 8 min under the effects of an ultrasonic field whilst the second part, the isotopic labeling, was assayed with and without the use of ultrasonic energy. Our results clearly demonstrate that the (18)O-isotopic labeling in a decoupling procedure cannot be accelerated using an ultrasonic field.

Can ultrasonic energy efficiently speed (18)O-labeling of proteins?, Carreira, Ricardo J., Lodeiro Carlos, Diniz Mario S., Moura Isabel, and Capelo Jose L. , Proteomics, Nov, Volume 9, Number 21, p.4974-4977, (2009) AbstractWebsite

We report in this work on the robustness of ultrasonic energy as a tool to speed the isotopic labeling of proteins using the (18)O-decoupling procedure. The first part of the decoupling procedure, comprising protein denaturation, reduction, alkylation and digestion, is done in 8 min under the effects of an ultrasonic field whilst the second part, the isotopic labeling, was assayed with and without the use of ultrasonic energy. Our results clearly demonstrate that the (18)O-isotopic labeling in a decoupling procedure cannot be accelerated using an ultrasonic field.

Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, K., Pereira A. S., Martins C. E., Timoteo C. G., Tavares P., Spinelli S., Kinne J., Flaudrops C., Cambillau C., Muyldermans S., Moura I., Moura J. J., Tegoni M., and Desmyter A. , Protein Sci, Mar, Volume 18, Number 3, p.619-28, (2009) AbstractWebsite

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.

Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system, Santos-Silva, T., Ferroni F., Thapper A., Marangon J., Gonzalez P. J., Rizzi A. C., Moura I., Moura J. J., Romao M. J., and Brondino C. D. , J Am Chem Soc, Jun 17, Volume 131, Number 23, p.7990-8, (2009) AbstractWebsite

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.

Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas, Najmudin, S., Bonifacio C., Duarte A. G., Pauleta S. R., Moura I., Moura J. J., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 65, Number Pt 7, p.730-2, (2009) AbstractWebsite

The orange-coloured protein (ORP) from Desulfovibrio gigas is a 12 kDa protein that contains a novel mixed-metal sulfide cluster of the type [S(2)MoS(2)CuS(2)MoS(2)]. Diffracting crystals of the apo form of ORP have been obtained. Data have been collected for the apo form of ORP to 2.25 A resolution in-house and to beyond 2.0 A resolution at ESRF, Grenoble. The crystals belonged to a trigonal space group, with unit-cell parameters a = 43, b = 43, c = 106 A.

A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane, Zhang, Z., Xia S., Leonard D., Jaffrezic-Renault N., Zhang J., Bessueille F., Goepfert Y., Wang X., Chen L., Zhu Z., Zhao J., Almeida M. G., and Silveira C. M. , Biosensors & Bioelectronics, Feb 15, Volume 24, Number 6, p.1574-9, (2009) AbstractWebsite

A conductometric biosensor for nitrite detection was developed using cytochrome c nitrite reductase (ccNiR) extracted from Desulfovibrio desulfuricans ATCC 27774 cells immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin, methyl viologen (MV), Nafion, and glycerol. The configuration parameters for this biosensor, including the enzyme concentration, ccNiR/BSA ratio, MV concentration, and Nafion concentration, were optimized. Various experimental parameters, such as sodium dithionite added, working buffer solution, and temperature, were investigated with regard to their effect on the conductance response of the biosensor to nitrite. Under the optimum conditions at room temperature (about 25 degrees C), the conductometric biosensor showed a fast response to nitrite (about 10s) with a linear range of 0.2-120 microM, a sensitivity of 0.194 microS/microM [NO(2)(-)], and a detection limit of 0.05 microM. The biosensor also showed satisfactory reproducibility (relative standard deviation of 6%, n=5). The apparent Michaelis-Menten constant (K(M,app)) was 338 microM. When stored in potassium phosphate buffer (100mM, pH 7.6) at 4 degrees C, the biosensor showed good stability over 1 month. No obvious interference from other ionic species familiar in natural waters was detected. The application experiments show that the biosensor is suitable for use in real water samples.

Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis, Rivas, M. G., Carepo M. S., Mota C. S., Korbas M., Durand M. C., Lopes A. T., Brondino C. D., Pereira A. S., George G. N., Dolla A., Moura J. J., and Moura I. , Biochemistry, Feb 10, Volume 48, Number 5, p.873-82, (2009) AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmental conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 microM molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

Total lead and its stable isotopes in the digestive gland of Octopus vulgaris as a fingerprint, Raimundo, J., Vale C., Caetano M., Cesario R., and Moura I. , Aquatic Biology, 2009, Volume 6, Number 1-3, p.25-30, (2009) AbstractWebsite

We hypothesised that the isotopic signature of Pb in the digestive gland of the common octopus reflects the organisms' sources of Pb, and investigated whether isotopic Pb ratios are useful in characterising octopus populations. A total of 47 Octopus vulgaris individuals were captured between November 2005 and September 2006 in 2 areas of the Portuguese coast, near Matosinhos (Area A; NW coast) and Olhao (Area B; south coast), and digestive glands were analysed for total Pb and its stable isotopes. The same determinations were performed in 22 samples of surface sediments from the 2 areas. Pb concentrations in the digestive gland of specimens from Area B (2.8 to 13.0 mu g g(-1)) exceeded the values found in Area A (1.3 to 8.3 mu g g(-1)). A similar pattern was found for the isotopic Pb ratios: (206)Pb/(207)Pb was 1.173 to 1.185 for Area A and 1.165 to 1.172 for B; (206)Pb/(208)Pb was 0.476 to 0.487 for Area A and 0.318 to 0.483 for B. The different signatures of the digestive glands are in line with those observed in the surface sediments of the 2 coastal areas (e.g. (206)Pb/(207)Pb was 1.179 to 1.207 for Area A and 1.171 to 1.181 for B). However, the isotopic Pb signature of octopus was less radiogenic than that of sediments. Because octopus has a short life span (up to 24 mo) the signature reflects recent sources of Pb that have a less radiogenic signature. The Pb signature of surface sediments tends to integrate the record of the previous few years or decades, due to the frequent resuspension of the upper layer of coastal sediments. The mixing of sediments deposited during those periods results in higher isotopic Pb ratios (more radiogenic). The consistent differences between the 2 areas, in sediments and octopus, points towards the isotopic Pb signature as a possible useful tool to distinguish octopus populations.

Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments, Costa, P. M., Repolho T., Caeiro S., Diniz M. E., Moura I., and Costa M. H. , Ecotoxicology and Environmental Safety, Sep, Volume 71, Number 1, p.117-124, (2008) AbstractWebsite

Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (U), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate NIT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches. (C) 2007 Elsevier Inc. All rights reserved.

Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies, Dell'Acqua, S., Pauleta S. R., Monzani E., Pereira A. S., Casella L., Moura J. J., and Moura I. , Biochemistry, Oct 14, Volume 47, Number 41, p.10852-62, (2008) AbstractWebsite

The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.

Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Correia, C., Besson S., Brondino C. D., Gonzalez P. J., Fauque G., Lampreia J., Moura I., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1321-33, (2008) AbstractWebsite

Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Iota) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at Em=+197 mV (heme c) and -4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe-4S]+ cluster and overlapping signals associated with at least three types of [4Fe-4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called "low-pH" and "high-pH," changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.

Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas, Cordas, C. M., Moura I., and Moura J. J. , Bioelectrochemistry, Nov, Volume 74, Number 1, p.83-9, (2008) AbstractWebsite

Direct electrochemical response was first time observed for the redox centers of Desulfovibrio gigas [NiFe]-Hase, in non-turnover conditions, by cyclic voltammetry, in solution at glassy carbon electrode. The activation of the enzyme was achieved by reduction with H(2) and by electrochemical control and electrocatalytic activity was observed. The inactivation of the [NiFe]-Hase was also attained through potential control. All electrochemical data was obtained in the absence of enzyme inhibitors. The results are discussed in the context of the proposed mechanism currently accepted for activation/inactivation of [NiFe]-Hases.

Enzymatic activity mastered by altering metal coordination spheres, Moura, I., Pauleta S. R., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1185-95, (2008) AbstractWebsite

Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.

A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Bursakov S. A., Di Rocco G., Trincao J., Pickering I. J., George G. N., Calvete J. J., Shnyrov V. L., Brondino C. D., Pereira A. S., Lampreia J., Tavares P., Moura J. J., and Moura I. , J Inorg Biochem, May-Jun, Volume 102, Number 5-6, p.1380-95, (2008) AbstractWebsite

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

Influence of the protein staining in the fast ultrasonic sample treatment for protein identification through peptide mass fingerprint and matrix-assisted laser desorption ionization time of flight mass spectrometry, Galesio, M., Vieira D. V., Rial-Otero R., Lodeiro C., Moura I., and Capelo J. L. , Journal of Proteome Research, May, Volume 7, Number 5, p.2097-2106, (2008) AbstractWebsite

The influence of the protein staining used to visualize protein bands, after in-gel protein separation, for the correct identification of proteins by peptide mass fingerprint (PMF) after application of the ultrasonic in-gel protein protocol was studied. Coomassie brilliant blue and silver nitrate, both visible stains, and the fluorescent dyes Sypro Red and Sypro Orange were evaluated. Results obtained after comparison with the overnight in-gel protocol showed that good results, in terms of protein sequence coverage and number of peptides matched, can be obtained with anyone of the four stains studied. Two minutes of enzymatic digestion time was enough for proteins stained with coomassie blue, while 4 min was necessary when silver or Sypro stainings were employed in order to reach equivalent results to those obtained for the overnigh in-gel protein protocol. For the silver nitrate stain, the concentration of silver present in the staining solution must be 0.09% (w/v) to minimize background in the MALDI mass spectra.

Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study, Paes de Sousa, P. M., Pauleta S. R., Rodrigues D., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.779-87, (2008) AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum, Najmudin, S., Gonzalez P. J., Trincao J., Coelho C., Mukhopadhyay A., Cerqueira N. M., Romao C. C., Moura I., Moura J. J., Brondino C. D., and Romao M. J. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.737-53, (2008) AbstractWebsite

Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe-4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 A. The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH(2) ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (lambda = 1.77 A) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S-S distance between the sulfur ligand and the Sgamma atom of the molybdenum ligand Cys(A140) was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 A, indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with (15)N-labeled nitrate and in D(2)O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)-nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligand-based redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.

Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue, Aureliano, M., Henao F., Tiago T., Duarte R. O., Moura J. J., Baruah B., and Crans D. C. , Inorg Chem, Jul 7, Volume 47, Number 13, p.5677-84, (2008) AbstractWebsite

The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.