Export 528 results:
Sort by: Author Title Type [ Year  (Asc)]
Thiol/disulfide formation associated with the redox activity of the [Fe3S4] cluster of Desulfovibrio gigas ferredoxin II. 1H NMR and Mossbauer spectroscopic study, Macedo, A. L., Moura I., Surerus K. K., Papaefthymiou V., Liu M. Y., Legall J., Munck E., and Moura J. J. , J Biol Chem, Mar 18, Volume 269, Number 11, p.8052-8, (1994) AbstractWebsite

Desulfovibrio gigas ferredoxin II (FdII) is a small protein (alpha 4 subunit structure as isolated; M(r) approximately 6400 per subunit; 6 cysteine residues) containing one Fe3S4 cluster per alpha-subunit. The x-ray structure of FdII has revealed a disulfide bridge formed by Cys-18 and Cys-42 approximately 13 A away from the center of the cluster; moreover, the x-ray structure indicates that Cys-11 forms a disulfide bridge with a methanethiol. In the oxidized state, FdIIoxm the 1H NMR spectra, exhibit four low-field contact-shifted resonances at 29, 24, 18, and 15.5 ppm whereas the reduced state, FdIIR (S = 2), yields two features at +18.5 and -11 ppm. In the course of studying the redox behavior of FdII, we have discovered a stable intermediate, FdIIint, that yields 1H resonances at 24, 21.5, 21, and 14 ppm. This intermediate appears in the potential range where the cluster (E'0 approximately -130 mV) is reduced from the [Fe3S4]1+ to the [Fe3S4]0 state. FdIIint is observed during reductive titrations with dithionite or hydrogen/hydrogenase or after partial oxidation of FdIIR by 2,6-dichlorophenolindophenol or air. Our studies show that a total of three electrons per alpha-subunit are transferred to FdII. Our experiments demonstrate the absence of a methanethiol-Cys-11 linkage in our preparations, and we propose that two of the three electrons are used for the reduction of the disulfide bridge. Mossbauer (and EPR) studies show that the Fe3S4 cluster of FdIIint is at the same oxidation level as FdIIox, but indicate some changes in the exchange couplings among the three ferric sites. Our data suggest that the differences in the NMR and Mossbauer spectra of FdIIox and FdIIint result from conformational changes attending the breaking or formation of the disulfide bridge. The present study suggests that experiments be undertaken to explore an in vivo redox function for the disulfide bridge.

Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies, Palma, P. N., Moura I., Legall J., Van Beeumen J., Wampler J. E., and Moura J. J. , Biochemistry, May 31, Volume 33, Number 21, p.6394-407, (1994) AbstractWebsite

Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical ternary complex, formed between one molecule of Desulfovibrio salexigens flavodoxin and two molecules of cytochrome c3, is proposed. These molecular models of the complexes were constructed on the basis of complementarity of Coulombic electrostatic surface potentials, using the available X-ray structures of the isolated proteins and, when required, model structures (D. salexigens flavodoxin and Desulfovibrio desulfuricans ATCC 27774 cytochrome c3) predicted by homology modeling.

Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli, Chen, B., Menon N. K., Dervertarnian L., Moura J. J., and Przybyla A. E. , FEBS Lett, Sep 12, Volume 351, Number 3, p.401-4, (1994) AbstractWebsite

We have cloned the gene encoding Desulfovibrio gigas ferredoxin using a photodigoxigenin-labelled probe synthesized with the polymerase chain reaction. The DNA sequence of the gene predicts a polypeptide of 58 residues after removal of the initial formyl methionine (polypeptide M(r) = 6,276). The ferredoxin gene was expressed in aerobically grown E. coli behind the lac promoter of pUC18 resulting in a high level of ferredoxin expression which comprises about 10% of the total cell protein. EPR analysis of recombinant ferredoxin revealed the presence of a [3Fe-4S] cluster which is characteristic of native D. gigas ferredoxin II.

Purification and Preliminary Characterization of Three C-Type Cytochromes from Pseudomonas Nautica Strain 617, Saraiva, L. M., Besson S., Moura I., and Fauque G. , Biochemical and Biophysical Research Communications, Volume 212, Number 3, p.1088-1097, (1995) AbstractWebsite
REDOX AND SPIN-STATE CONTROL OF THE ACTIVITY OF A DIHEME CYTOCHROME-C PEROXIDASE - SPECTROSCOPIC STUDIES, Prazeres, S., Moura I., Gilmour R., Pettigrew G., Ravi N., and Huynh B. H. , Nuclear Magnetic Resonance of Paramagnetic Macromolecules, Volume 457, p.141-163, (1995) Abstract
Spectroscopic properties of the cytochrome CD1 from the marine denitrifier Pseudomonas nautica, Besson, S., Carneiro C., Moura J. J. G., Moura I., and Fauque G. , Spectroscopy of Biological Molecules, p.263-264, (1995) AbstractWebsite
Structure and function of ferrochelatase, Ferreira, G. C., Franco R., Lloyd S. G., Moura I., Moura J. J., and Huynh B. H. , J Bioenerg Biomembr, Apr, Volume 27, Number 2, p.221-9, (1995) AbstractWebsite

Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression in Escherichia coli and in baculovirus-infected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.

Electrochemical studies on nitrite reductase towards a biosensor, Scharf, M., Moreno C., Costa C., Van Dijk C., Payne W. J., Legall J., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Apr 26, Volume 209, Number 3, p.1018-25, (1995) AbstractWebsite

A c-type hexaheme nitrite reductase (NiR) isolated from nitrate-grown cells of Desulfovibrio desulfuricans (Dd) ATCC 27774 catalyses the six-electron reduction of nitrite to ammonia. Previous electrochemical studies demonstrated that a simple electrocatalytic mechanism can be applied to this system (Moreno, C., Costa, C., Moura, I., LeGall, J., Liu, M. Y., Payne, W. J., Van Dijk, C. and Moura, J. J. G. (1992) Eur.J.Biochem. 212, 79-86). Its substrate specificity, availability and stability under ambient conditions makes this enzymatic system a promising candidate for use in a biosensor device. An electrochemical study of gel-immobilized Dd NiR on a glassy carbon electrode revealed both enzymatic activity and amperometric response to nitrite. In this study it was observed that the catalytic current density is a function of the nitrite concentration in solution and follows a characteristic Michaelis-Menten-type substrate dependence. Such a biosensor device (NiR-electrode) bears the option to be used for analytical determination of nitrite in complex media.

A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: purification and characterization, Besson, S., Carneiro C., Moura J. J., Moura I., and Fauque G. , Anaerobe, Aug, Volume 1, Number 4, p.219-26, (1995) AbstractWebsite

Nitrite reductase (cytochrome cd1) was purified to electrophoretic homogeneity from the soluble extract of the marine denitrifying bacterium Pseudomonas nautica strain 617. Cells were anaerobically grown with 10 mM nitrate as final electron acceptor. The soluble fraction was purified by four successive chromatographic steps and the purest cytochrome cd1 exhibited an A280 nm(oxidized)/A410nm(oxidized) coefficient of 0.90. In the course of purification, cytochrome cd1 specific activity presented a maximum value of 0.048 units/mg of protein. This periplasmic enzyme is a homodimer and each 60 kDa subunit contains one heme c and one heme d1 as prosthetic moieties, both in a low spin state. Redox potentials of hemes c and d1 were determined at three different pH values (6.6, 7.6 and 8.6) and did not show any pH dependence. The first 20 amino acids of the NH2-terminal region of the protein were identified and the sequence showed 45% identity with the corresponding region of Pseudomonas aeruginosa nitrite reductase but no homology to Pseudomonas stutzeri and Paracoccus denitrificans enzymes. Spectroscopic properties of Pseudomonas nautica 617 cytochrome cd1 in the ultraviolet-visible range and in electron paramagnetic resonance are described. The formation of a heme d1 -nitric-oxide complex as an intermediate of nitrite reduction was demonstrated by electron paramagnetic resonance experiments.

The affinity and specificity of Ca(2+)-binding sites of cytochrome-c peroxidase from Paracoccus denitrificans, Gilmour, R., Prazeres S., McGinnity D. F., Goodhew C. F., Moura J. J., Moura I., and Pettigrew G. W. , Eur J Biochem, Dec 15, Volume 234, Number 3, p.878-86, (1995) AbstractWebsite

The binding of Ca2+ to the dihaem cytochrome-c peroxidase from Paracoccus denitrificans was analysed by following perturbations in the visible and 1H-NMR spectra of both haem groups. The enzyme contains at least two types of Ca(2+)-binding site. Site I is occupied in the isolated enzyme, binds Ca2+ with a redox-state-independent Kd of 1.2 microM and accommodates neither Mg2+ nor Mn2+. Site II is unoccupied in dilute solutions of the isolated oxidised enzyme and binds Ca2+ cooperatively with a Kd of 0.52 mM. In the mixed valence form, the binding affinity increases to resemble that of site I. The cooperativity was shown by -Ca2+ binding to site II, the titration of haem methyl 1H-NMR resonances, and a half-of-sites effect observed for modification of an essential histidine with diethylpyrocarbonate. These are all consistent with site II being situated at the interface between two monomers of a dimeric enzyme. Thus the equilibrium of binding to site II is a reflection of the equilibrium for dimerisation and conditions which shift that equilibrium towards the dimer, such as increased ionic strength or high protein concentration, also increase Ca2+ affinity. Binding of Ca2+ to site II is required for formation of the active high spin state at the peroxidatic haem.

Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate reducing organism Desulfovibrio desulfuricans ATCC 27774, Bursakov, S., Liu M. Y., Payne W. J., Legall J., Moura I., and Moura J. J. , Anaerobe, Feb, Volume 1, Number 1, p.55-60, (1995) AbstractWebsite

Desulfovibrio desulfuricans ATCC 27774 is a sulfate reducer that can adapt to nitrate respiration, inducing the enzymes required to utilize this alternative metabolic pathway. Nitrite reductase from this organism has been previously isolated and characterized, but no information was available on the enzyme involved in the reduction of nitrate. This is the first report of purification to homogeneity of a nitrate reductase from a sulfate reducing organism, thus completing the enzymatic system required to convert nitrate (through nitrite) to ammonia. D. desulfuricans nitrate reductase is a monomeric (circa 70 kDa) periplasmic enzyme with a specific activity of 5.4 K(m) for nitrate was estimated to be 20 microM. EPR signals due to one [4Fe-4S] cluster and Mo(V) were identified in dithionite reduced samples and in the presence of nitrate.

Metabolic adaptations induced by long-term fasting in quails, Sartori, D. R., Migliorini R. H., Veiga J. A., Moura J. L., Kettelhut I. C., and Linder C. , Comp Biochem Physiol A Physiol, Jul, Volume 111, Number 3, p.487-93, (1995) AbstractWebsite

After up to 21 days without food, adult male quails (Coturnix coturnix japonica) lost about 45% of the initial body weight (100-150 g). As in naturally fast-adapted and larger birds, three phases were identified during prolonged fasting in quails. Phase I lasted 2-3 days and was characterized by a rapid decrease in the rate of body weight loss and high fat mobilization. Phase II was longer and characterized by a slow and steady decline in the rates of body weight loss and of nitrogen excretion. The third (critical) period was marked by an abrupt increase in the rates of body weight loss and of nitrogen excretion. Despite their small size, the duration of phase II in quails was relatively long, a clear advantage for the study of the relationships between the several metabolic events that occur during this crucial adaptative period. Also, the beginning of phase III could be precisely determined. Changes in blood glucose, plasma FFA and triacylglycerols levels, as well as in liver and carcass lipid content were similar to those found in other species of birds. Therefore, quails seem to be a suitable model to investigate the biochemical mechanisms involved in the metabolic adjustments to prolonged food deprivation in non fasting-adapted birds.

Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni, de Jong, G. A., Caldeira J., Sun J., Jongejan J. A., de Vries S., Loehr T. M., Moura I., Moura J. J., and Duine J. A. , Biochemistry, Jul 25, Volume 34, Number 29, p.9451-8, (1995) AbstractWebsite

Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

Total synthesis of a simple metalloprotein-desulforedoxin, Tavares, P., Wunderlich J. K., Lloyd S. G., Legall J., Moura J. J., and Moura I. , Biochem Biophys Res Commun, Mar 17, Volume 208, Number 2, p.680-7, (1995) AbstractWebsite

Desulforedoxin is a protein purified from cellular extracts of Desulfovibrio gigas. It is a small (7.9 kDa) dimeric protein that contains a distorted rubredoxin like center (one single iron coordinated by four cysteinyl residues). Due to the simplicity of the polypeptide chain and of the iron center, an attempt was made to chemically produce this protein. A 36 amino acid polypeptide chain was synthesized based on the known sequence of native Desulforedoxin. The iron center was then reconstituted and the biochemical and spectroscopic characteristics of this synthetic protein were investigated. The final product has an equal sequence to the protein purified from D. gigas. The synthetic and natural Dx are very similar, in terms redox potential and spectroscopic properties (UV-Visible, EPR, Mossbauer).

Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas, Romao, M. J., Archer M., Moura I., Moura J. J., Legall J., Engh R., Schneider M., Hof P., and Huber R. , Science, Nov 17, Volume 270, Number 5239, p.1170-6, (1995) AbstractWebsite

The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a member of the xanthine oxidase family. The protein contains a molybdopterin cofactor (Mo-co) and two different [2Fe-2S] centers. It is folded into four domains of which the first two bind the iron sulfur centers and the last two are involved in Mo-co binding. Mo-co is a molybdenum molybdopterin cytosine dinucleotide. Molybdopterin forms a tricyclic system with the pterin bicycle annealed to a pyran ring. The molybdopterin dinucleotide is deeply buried in the protein. The cis-dithiolene group of the pyran ring binds the molybdenum, which is coordinated by three more (oxygen) ligands.

Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mossbauer methods, Franco, R., Moura J. J., Moura I., Lloyd S. G., Huynh B. H., Forbes W. S., and Ferreira G. C. , J Biol Chem, Nov 3, Volume 270, Number 44, p.26352-7, (1995) AbstractWebsite

All organisms utilize ferrochelatase (protoheme ferrolyase, EC to catalyze the terminal step of the heme biosynthetic pathway, which involves the insertion of ferrous ion into protoporphyrin IX. Kinetic methods and Mossbauer spectroscopy have been used in an effort to characterize the ferrous ion-binding active site of recombinant murine ferrochelatase. The kinetic studies indicate that dithiothreitol, a reducing agent commonly used in ferrochelatase activity assays, interferes with the enzymatic production of heme. Ferrochelatase specific activity values determined under strictly anaerobic conditions are much greater than those obtained for the same enzyme under aerobic conditions and in the presence of dithiothreitol. Mossbauer spectroscopy conclusively demonstrates that, under the commonly used assay conditions, dithiothreitol chelates ferrous ion and hence competes with the enzyme for binding the ferrous substrate. Mossbauer spectroscopy of ferrous ion incubated with ferrochelatase in the absence of dithiothreitol shows a somewhat broad quadrupole doublet. Spectral analysis indicates that when 0.1 mM Fe(II) is added to 1.75 mM ferrochelatase, the overwhelming majority of the added ferrous ion is bound to the protein. The spectroscopic parameters for this bound species are delta = 1.36 +/- 0.03 mm/s and delta EQ = 3.04 +/- 0.06 mm/s, distinct from the larger delta EQ of a control sample of Fe(II) in buffer only. The parameters for the bound species are consistent with an active site composed of nitrogenous/oxygenous ligands and inconsistent with the presence of sulfur ligands. This finding is in accord with the absence of conserved cysteines among the known ferrochelatase sequences. The implications these results have with regard to the mechanism of ferrochelatase activity are discussed.

Mossbauer characterization of Paracoccus denitrificans cytochrome c peroxidase. Further evidence for redox and calcium binding-induced heme-heme interaction, Prazeres, S., Moura J. J., Moura I., Gilmour R., Goodhew C. F., Pettigrew G. W., Ravi N., and Huynh B. H. , J Biol Chem, Oct 13, Volume 270, Number 41, p.24264-9, (1995) AbstractWebsite

Mossbauer and electron paramagnetic resonance (EPR) spectroscopies were used to characterize the diheme cytochrome c peroxidase from Paracoccus denitrificans (L.M.D. 52.44). The spectra of the oxidized enzyme show two distinct spectral components characteristic of low spin ferric hemes (S = 1/2), revealing different heme environments for the two heme groups. The Paracoccus peroxidase can be non-physiologically reduced by ascorbate. Mossbauer investigation of the ascorbate-reduced peroxidase shows that only one heme (the high potential heme) is reduced and that the reduced heme is diamagnetic (S = 0). The other heme (the low potential heme) remains oxidized, indicating that the enzyme is in a mixed valence, half-reduced state. The EPR spectrum of the half-reduced peroxidase, however, shows two low spin ferric species with gmax = 2.89 (species I) and gmax = 2.78 (species II). This EPR observation, together with the Mossbauer result, suggests that both species are arising from the low potential heme. More interestingly, the spectroscopic properties of these two species are distinct from that of the low potential heme in the oxidized enzyme, providing evidence for heme-heme interaction induced by the reduction of the high potential heme. Addition of calcium ions to the half-reduced enzyme converts species II to species I. Since calcium has been found to promote peroxidase activity, species I may represent the active form of the peroxidatic heme.

Resonance Raman study on the iron-sulfur centers of Desulfovibrio gigas aldehyde oxidoreductase, Zhelyaskov, V., Yue K. T., Legall J., Barata B. A., and Moura J. J. , Biochim Biophys Acta, Oct 25, Volume 1252, Number 2, p.300-4, (1995) AbstractWebsite

Resonance Raman spectra of the molybdenum containing aldehyde oxidoreductase from Desulfovibrio gigas were recorded at liquid nitrogen temperature with various excitation wavelengths. The spectra indicate that all the iron atoms are organised in [2Fe-2S] type centers consistent with cysteine ligations. No vibrational modes involving molybdenum could be clearly identified. The features between 280 and 420 cm-1 are similar but different from those of typical plant ferredoxin-like [2Fe-2S] cluster. The data are consistent with the presence of a plant ferredoxin-like cluster (center I) and a unique [2Fe-2S] cluster (center II), as suggested by other spectroscopic studies. The Raman features of center II are different from those of other [2Fe-2S] clusters in proteins. In addition, a strong peak at ca. 683 cm-1, which is not present in other [2Fe-2S] clusters in proteins, was observed with purple excitation (406.7-413.1 nm). The peak is assigned to enhanced cysteinyl C-S stretching in center II, suggesting a novel geometry for this center.

Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies, Morais, J., Palma P. N., Frazao C., Caldeira J., Legall J., Moura I., Moura J. J., and Carrondo M. A. , Biochemistry, Oct 3, Volume 34, Number 39, p.12830-41, (1995) AbstractWebsite

The three-dimensional X-ray structure of cytochrome c3 from a sulfate reducing bacterium, Desulfovibrio desulfuricans ATCC 27774 (107 residues, 4 heme groups), has been determined by the method of molecular replacement [Frazao et al. (1994) Acta Crystallogr. D50, 233-236] and refined at 1.75 A to an R-factor of 17.8%. When compared with the homologous proteins isolated from Desulfovibrio gigas, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris Miyazaki F, and Desulfomicrobium baculatus, the general outlines of the structure are essentialy kept [heme-heme distances, heme-heme angles, His-His (axial heme ligands) dihedral angles, and the geometry of the conserved aromatic residues]. The three-dimensional structure of D. desulfuricans ATCC 27774 cytochrome c3Dd was modeled on the basis of the crystal structures available and amino acid sequence comparisons within this homologous family of multiheme cytochromes [Palma et al. (1994) Biochemistry 33, 6394-6407]. This model is compared with the refined crystal structure now reported, in order to discuss the validity of structure prediction methods and critically evaluate the steps used to predict protein structures by homology modeling. The four heme midpoint redox potentials were determined by using deconvoluted electron paramagnetic resonance (EPR) redox titrations. Structural criteria (electrostatic potentials, heme ligand orientation, EPR g values, heme exposure, data from protein-protein interaction studies) are invoked to assign the redox potentials corresponding to each specific heme in the three-dimensional structure.

Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure, Archer, M., Huber R., Tavares P., Moura I., Moura J. J., Carrondo M. A., Sieker L. C., Legall J., and Romao M. J. , J Mol Biol, Sep 1, Volume 251, Number 5, p.690-702, (1995) AbstractWebsite

The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2 x 36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic R-factor of 16.9% at 1.8 A resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 A, c = 72.22 A (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 A apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin.

Expression of Desulfovibrio gigas desulforedoxin in Escherichia coli. Purification and characterization of mixed metal isoforms, Czaja, C., Litwiller R., Tomlinson A. J., Naylor S., Tavares P., Legall J., Moura J. J., Moura I., and Rusnak F. , J Biol Chem, Sep 1, Volume 270, Number 35, p.20273-7, (1995) AbstractWebsite

The dsr gene from Desulfovibrio gigas encoding the nonheme iron protein desulforedoxin was cloned using the polymerase chain reaction, expressed in Escherichia coli, and purified to homogeneity. The physical and spectroscopic properties of the recombinant protein resemble those observed for the native protein isolated from D. gigas. These include an alpha 2 tertiary structure, the presence of bound iron, and absorbance maxima at 370 and 506 nm in the UV/visible spectrum due to ligand-to-iron charge transfer bands. Low temperature electron paramagnetic resonance studies confirm the presence of a high-spin ferric ion with g values of 7.7, 5.7, 4.1, and 1.8. Interestingly, E. coli produced two forms of desulforedoxin containing iron. One form was identified as a dimer with the metal-binding sites of both subunits occupied by iron while the second form contained equivalent amounts of iron and zinc and represents a dimer with one subunit occupied by iron and the second with zinc.

Analysis, design and engineering of simple iron-sulfur proteins: Tales from rubredoxin and desulforedoxin, Moura, J. J. G., Goodfellow B. J., Romao M. J., Rusnak F., and Moura I. , Comments on Inorganic Chemistry, 1996, Volume 19, Number 1, p.47-+, (1996) AbstractWebsite

The most thoroughly characterized non-heme iron center in biology is Rubredoxin, the simplest member of the iron-sulfur: class of metalloproteins. Rubredoxin contains a high-spin iron atom with tetrahedral coordination by four cysteinyl sulfur atoms. A structural variant of this center is found in Desulforedoxin, the smallest known Rubredoxin type protein. The 3D structure of both Rd and Dr has been determined at high resolution. These two proteins can therefore be used as case studies in which structural control by the polypeptide chain over the metal site can be discussed in detail.

Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Pereira, A. S., Franco R., Feio M. J., Pinto C., Lampreia J., Reis M. A., Calvete J., Moura I., Beech I., Lino A. R., and Moura J. J. , Biochem Biophys Res Commun, Apr 16, Volume 221, Number 2, p.414-21, (1996) AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative, Goodfellow, B. J., Tavares P., Romao M. J., Czaja C., Rusnak F., Legall J., Moura I., and Moura J. J. G. , Journal of Biological Inorganic Chemistry, Aug, Volume 1, Number 4, p.341-354, (1996) AbstractWebsite

Desulforedoxin is a simple dimeric protein isolated from Desulfovibrio gigas containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with a 36-amino-acid monomer). H-1 NMR spectra of the oxidized Dx(Fe3+) and reduced Dx(Fe2+) forms were analyzed. The spectra show substantial line broadening due to the paramagnetism of iron. However, very low-field-shifted resonances, assigned to H beta protons, were observed in the reduced state and their temperature dependence analyzed. The active site of Dx was reconstituted with zinc, and its solution structure was determined using 2D NMR methods. This diamagnetic form gave high-resolution NMR data enabling the identification of all the amino acid spin systems. Sequential assignment and the determination of secondary structural elements was attempted using 2D NOESY experiments. However, because of the symmetrical dimer nature of the protein standard, NMR sequential assignment methods could not resolve all cross peaks due to inter- and intra-chain effects. The X-ray structure enabled the spatial relationship between the monomers to be obtained, and resolved the assignment problems. Secondary structural features could be identified from the NMR data; an antiparallel beta-sheet running from D5 to V18 with a well-defined beta-turn around cysteines C9 and C12. The section G22 to T25 is poorly defined by the NMR data and is followed by a turn around V27-C29. The C-terminus ends up near residues V6 and Y7. Distance geometry (DG) calculations allowed families of structures to be generated from the NMR data. A family of structures with a low target function violation for the Dr monomer and dimer were found to have secondary structural elements identical to those seen in the X-ray structure. The amide protons for G4, D5, G13, L11 NH and Q14 NH epsilon amide protons, H-bonded in the X-ray structure, were not seen by NMR as slowly exchanging, while structural disorder at the N-terminus, for the backbone at E10 and for the section G22-T25, was observed. Comparison between the Fe and Zn forms of Dr suggests that metal substitution does not have an effect on the structure of the protein.