Publications

Export 528 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Electron transfer mechanism studies of cytochrome c3: pH dependence of the redox equilibria, Santos, H., Moura J. J. G., Xavier A. V., and Legall J. , Inorganica Chimica Acta, Volume 79, p.167-169, (1983) AbstractWebsite
n/a
Electron transport in sulfate-reducing bacteria. Molecular modeling and NMR studies of the rubredoxin--tetraheme-cytochrome-c3 complex, Stewart, D. E., Legall J., Moura I., Moura J. J., Peck, H. D. Jr., Xavier A. V., Weiner P. K., and Wampler J. E. , Eur J Biochem, Nov 20, Volume 185, Number 3, p.695-700, (1989) AbstractWebsite

A hypothetical model of the complex formed between the iron-sulfur protein rubredoxin and the tetraheme cytochrome c3 from the sulfate-reducing bacteria Desulfovibrio vulgaris (Hildenborough) has been proposed utilizing computer graphic modeling, computational methods and NMR spectroscopy. The proposed complex appears feasible on the basis of complementary electrostatic interaction and steric factors and is consistent with the data from NMR experiments. In this model, the non-heme iron atom of rubredoxin is in close proximity to heme 1 of cytochrome c3. The complex is stabilized by charge-pair interactions and hydrogen bonds. This complex is compared to the flavodoxin-cytochrome c3 complex previously proposed [Stewart, D. E., LeGall, J., Moura, I., Moura, J. J. G., Peck, H. D. Jr, Xavier, A. V., Weiner, P. K. & Wampler, J. E. (1988) Biochemistry 27, 2444-2450] and new NMR data shows that both proteins interact with the same heme group of the cytochrome as postulated.

Electronic and magnetic properties of nickel-substituted rubredoxin: a variable-temperature magnetic circular dichroism study, Kowal, Andrzej T., Zambrano Isabel C., Moura Isabel, Moura Jose J. G., Legall Jean, and Johnson Michael K. , Inorganic Chemistry, 1988/04/01, Volume 27, Number 7, p.1162-1166, (1988) AbstractWebsite
n/a
Electronic structure description of the mu(4)-sulfide bridged tetranuclear Cu(Z) center in N(2)O reductase, Chen, P., DeBeer George S., Cabrito I., Antholine W. E., Moura J. J., Moura I., Hedman B., Hodgson K. O., and Solomon E. I. , J Am Chem Soc, Feb 6, Volume 124, Number 5, p.744-5, (2002) AbstractWebsite

Spectroscopy coupled with density functional calculations has been used to define the spin state, oxidation states, spin distribution, and ground state wave function of the mu4-sulfide bridged tetranuclear CuZ cluster of nitrous oxide reductase. Initial insight into the electronic contribution to N2O reduction is developed, which involves a sigma superexchange pathway through the bridging sulfide.

Encapsulation of flavodoxin in reverse micelles, Andrade, S., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, May 29, Volume 234, Number 3, p.651-4, (1997) AbstractWebsite

The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes, Silveira, Celia M., Baur Jessica, Holzinger Michael, Moura Jose J. G., Cosnier Serge, and Gabriela Almeida M. , Electroanalysis, Dec, Volume 22, Number 24, p.2973-2978, (2010) AbstractWebsite

Single-walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10-fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4 +/- 0.1 A L mol(-1) cm(-2) and 1500 mu A cm(-2), respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90% and 60% of its initial sensitivity to nitrite after 20 and 248 days, respectively.

Enzymatic activity mastered by altering metal coordination spheres, Moura, I., Pauleta S. R., and Moura J. J. , J Biol Inorg Chem, Nov, Volume 13, Number 8, p.1185-95, (2008) AbstractWebsite

Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.

Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774, Bursakov, S. A., Carneiro C., Almendra M. J., Duarte R. O., Caldeira J., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Oct 29, Volume 239, Number 3, p.816-22, (1997) AbstractWebsite

Some sulfate reducing bacteria can induce nitrate reductase when grown on nitrate containing media being involved in dissimilatory reduction of nitrate, an important step of the nitrogen cycle. Previously, it was reported the purification of the first soluble nitrate reductase from a sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774 (S.A. Bursakov, M.-Y. Liu, W.J. Payne, J. LeGall, I. Moura, and J.J.G. Moura (1995) Anaerobe 1, 55-60). The present work provides further information about this monomeric periplasmic nitrate reductase (Dd NAP). It has a molecular mass of 74 kDa, 18.6 U specific activity, KM (nitrate) = 32 microM and a pHopt in the range 8-9.5. Dd NAP has peculiar properties relatively to ionic strength and cation/anion activity responses. It is shown that monovalent cations (potassium and sodium) stimulate NAP activity and divalent (magnesium and calcium) inhibited it. Sulfate anion also acts as an activator in KPB buffer. NAP native form is protected by phosphate anion from cyanide inactivation. In the presence of phosphate, cyanide even stimulates NAP activity (up to 15 mM). This effect was used in the purification procedure to differentiate between nitrate and nitrite reductase activities, since the later is effectively blocked by cyanide. Ferricyanide has an inhibitory effect at concentrations higher than 1 mM. The N-terminal amino acid sequence has a cysteine motive C-X2-C-X3-C that is most probably involved in the coordination of the [4Fe-4S] center detected by EPR spectroscopy. The active site of the enzyme consists in a molybdopterin, which is capable for the activation of apo-nit-1 nitrate reductase of Neurospora crassa. The oxidized product of the pterin cofactor obtained by acidic hidrolysis of native NAP with sulfuric acid was identified by HPLC chromatography and characterized as a molybdopterin guanine dinucleotide (MGD).

Enzymatic spectrophotometric determination of nitrites in beer, Girotti, S., Ferri E. N., Fini F., Ruffini F., Budini R., Moura I., Almeida G., Costa C., Moura J. J. G., and Carrea G. , Analytical Letters, 1999, Volume 32, Number 11, p.2217-2227, (1999) AbstractWebsite

A colorimetric assay for nitrite determination in beer based on c-type multiheme enzyme Nitrite reductase (NiR) isolated from Desulfovibrio desulfuricans ATCC 27774, was developed. Using the enzyme in solution, nitrite assay was linear in the 10(-8) - 10(-2) M range with a detection limit of 10(-8) M. and a recovery ranging from 90 to 107%. The imprecision ranged from 4 to 10% on the entire calibration curve. With NIR immobilised onto a nylon coil, a flow reactor was developed which showed a narrower linear range (10(-5) - 10(-2) M) and a higher detection limit (10(-5) M) than with the enzyme in solution, but made it possible to reuse the enzyme up to 100 times (50% residual activity). Sample preparation was simple and fast: only degassing and beer dilution by buffer was needed. This enzymatic assay was in good agreement with the results obtained using commercial nitrite determination kits.

EPR and Mossbauer spectroscopic studies on enoate reductase, Caldeira, J., Feicht R., White H., Teixeira M., Moura J. J., Simon H., and Moura I. , J Biol Chem, Aug 2, Volume 271, Number 31, p.18743-8, (1996) AbstractWebsite

Enoate reductase (EC 1.3.1.31) is a protein isolated from Clostridium tyrobutyricum that contains iron, labile sulfide, FAD, and FMN. The enzyme reduces the alpha,beta carbon-carbon double bond of nonactivated 2-enoates and in a reversible way that of 2-enals at the expense of NADH or reduced methyl viologen. UV-visible and EPR potentiometric titrations detect a semiquinone species in redox intermediate states characterized by an isotropic EPR signal at g = 2.0 without contribution at 580 nm. EPR redox titration shows two widely spread mid-point redox potentials (-190 and -350 mV at pH 7. 0), and a nearly stoichiometric amount of this species is detected. The data suggest the semiquinone radical has an anionic nature. In the reduced form, the [Fe-S] moiety is characterized by a single rhombic EPR spectrum, observed in a wide range of temperatures (4. 2-60 K) with g values at 2.013, 1.943, and 1.860 (-180 mV at pH 7.0). The gmax value is low when compared with what has been reported for other iron-sulfur clusters. Mossbauer studies reveal the presence of a [4Fe-4S]+2/+1 center. One of the subcomponents of the spectrum shows an unusually large value of quadrupole splitting (ferrous character) in both the oxidized and reduced states. Substrate binding to the reduced enzyme induces subtle changes in the spectroscopic Mossbauer parameters. The Mossbauer data together with known kinetic information suggest the involvement of this iron-sulfur center in the enzyme mechanism.

EPR and Mossbauer studies of desulforedoxin from Desulfovibrio gigas, Moura, I., Huynh B., Legall J., Xavier A. V., and Munck E. , Ciênc. Biol. (Portugal), Volume 5, p.199-201, (1980) Abstract
n/a
EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774, Gonzalez, P. J., Rivas M. G., Brondino C. D., Bursakov S. A., Moura I., and Moura J. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.609-16, (2006) AbstractWebsite

Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe-4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to -500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe-4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.

EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction, Rivas, M. G., Gonzalez P. J., Brondino C. D., Moura J. J., and Moura I. , J Inorg Biochem, Nov, Volume 101, Number 11-12, p.1617-22, (2007) AbstractWebsite

The EPR characterization of the molybdenum(V) forms obtained on formate reduction of both as-prepared and inhibited formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774, an enzyme that catalyzes the oxidation of formate to CO(2), is reported. The Mo(V) EPR signal of the as-prepared formate-reduced enzyme is rhombic (g(max)=2.012, g(mid)=1.996, g(min)=1.985) and shows hyperfine coupling with two nuclear species with I=1/2. One of them gives an anisotropic splitting and is not solvent exchangeable (A(max)=11.7, A(mid)=A(min)=non-detectable, A-values in cm(-1)x10(-4)). The second species is exchangeable with solvent and produces a splitting at the three principal g-values (A(max)=7.7, A(mid)=10.0, A(min)=9.3). The hyperfine couplings of the non-solvent and solvent exchangeable nuclei are assigned to the hydrogen atoms of the beta-methylene carbon of a selenocysteine and to a Mo ligand whose nature, sulfydryl or hydroxyl, is still in debate. The Mo(V) species obtained in the presence of inhibitors (azide or cyanide) yields a nearly axial EPR signal showing only one detectable splitting given by nuclear species with I=1/2 (g(max)=2.092, g(mid)=2.000, g(min)=1.989, A(max)=non-detectable, A(mid)=A(min)=7.0), which is originated from the alpha-proton donated by the formate to a proximal ligand of the molybdenum. The possible structures of both paramagnetic molybdenum species (observed upon formate reduction in presence and absence of inhibitors) are discussed in comparison with the available structural information of this enzyme and the structural and EPR properties of the closely related formate dehydrogenase-H from Escherichia coli.

EPR spectroscopy on mononuclear molybdenum-containing enzymes, Maia, L. B., Moura I., and Moura J. J. G. , Future Directions in Metalloprotein and Metalloenzyme Research, Biological Magnetic Resonance, Vol. 33 (ISBN: 978-3-319-59100-1), Cham, p.55-101, (2017) Abstract

The biological relevance of molybdenum was demonstrated in the early 1950s-1960s, by Bray, Beinert, Lowe, Massey, Palmer, Ehrenberg, Pettersson, Vänngård, Hanson and others, with ground-breaking studies performed, precisely, by electron paramagnetic resonance (EPR) spectroscopy. Those earlier studies, aimed to investigate the mammalian xanthine oxidase and avian sulfite oxidase enzymes, demonstrated the surprising biological reduction of molybdenum to the paramagnetic Mo5+. Since then, EPR spectroscopy, alongside with other spectroscopic methods and X-ray crystallography, has contributed to our present detailed knowledge about the active site structures, catalytic mechanisms and structure/activity relationships of the molybdenum-containing enzymes.
This Chapter will provide a perspective on the contribution that EPR spectroscopy has made to some selected systems. After a brief overview on molybdoenzymes, the Chapter will be focused on the EPR studies of mammalian xanthine oxidase, with a brief account on the prokaryotic aldehyde oxidoreductase, nicotinate dehydrogenase and carbon monoxide dehydrogenase, vertebrate sulfite oxidase, and prokaryotic formate dehydrogenases and nitrate reductases.

EPR studies of the Mo-enzyme aldehyde oxidoreductase from Desulfovibrio gigas: an application of the Bloch-Wangsness-Redfield theory to a system containing weakly-coupled paramagnetic redox centers with different relaxation rates, Gonzalez, P. J., Barrera G. I., Rizzi A. C., Moura J. J., Passeggi M. C., and Brondino C. D. , J Inorg Biochem, Oct, Volume 103, Number 10, p.1342-6, (2009) AbstractWebsite

Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.

EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, He, S. H., Teixeira M., Legall J., Patil D. S., Moura I., Moura J. J., Dervartanian D. V., Huynh B. H., and Peck, H. D. Jr. , J Biol Chem, Feb 15, Volume 264, Number 5, p.2678-82, (1989) AbstractWebsite

The periplasmic hydrogenase containing equivalent amounts of nickel and selenium plus non-heme iron [NiFeSe) hydrogenase) has been purified from cells of the sulfate reducing bacterium Desulfovibrio baculatus (DSM 1748) grown on a lactate/sulfate medium containing natural Se isotopes and the nuclear isotope, 77Se. Both the 77Se-enriched and unenriched hydrogenases were shown to be free of other hydrogenases and characterized with regard to their Se contents. EPR studies of the reduced nickel signal generated by redox titrations of the enriched and unenriched (NiFeSe) hydrogenases demonstrated that the gx = 2.23 and gy = 2.17 resonances are appreciably broadened by the spin of the 77Se nucleus (I = 1/2). This observation demonstrates unambiguously that the unpaired electron is shared by the Ni and Se atoms and that Se serves as a ligand to the nickel redox center of the (NiFeSe) hydrogenase.

EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris, Patil, D. S., Moura J. J., He S. H., Teixeira M., Prickril B. C., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Huynh B. H. , J Biol Chem, Dec 15, Volume 263, Number 35, p.18732-8, (1988) AbstractWebsite

The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) belongs to the category of [Fe] hydrogenase which contains only iron-sulfur clusters as its prosthetic groups. Amino acid analyses were performed on the purified D. vulgaris hydrogenase. The amino acid composition obtained compared very well with the result derived from the nucleotide sequence of the structural gene (Voordouw, G., Brenner, S. (1985) Eur. J. Biochem. 148, 515-520). Detailed EPR reductive titration studies on the D. vulgaris hydrogenase were performed to characterize the metal centers in this hydrogenase. In addition to the three previously observed EPR signals (namely, the "isotropic" 2.02 signal, the rhombic 2.10 signal, and the complex signal of the reduced enzyme), a rhombic signal with resonances at the g-values of 2.06, 1.96, and 1.89 (the rhombic 2.06 signal) was detected when the samples were poised at potentials between 0 and -250 mV (with respect to normal hydrogen electrode). The midpoint redox potentials for each of the four EPR-active species were determined, and the characteristics of each EPR signal are described. Both the rhombic 2.10 and 2.06 signals exhibit spectral properties that are distinct from a ferredoxin-type [4Fe-4S] cluster and are proposed to originate from the same H2-binding center but in two different conformations. The complex signal of the reduced hydrogenase has been shown to represent two spin-spin interacting ferredoxin-type [4Fe-4S]1+ clusters (Grande, H. J., Dunham, W. R., Averill, B., Van Dijk, C., and Sands, R. H. (1983) Eur. J. Biochem. 136, 201-207). The titration data indicated a strong cooperative effect between these two clusters during their reduction. In an effort to accurately estimate the number of iron atoms/molecule of hydrogenase, plasma emission and chemical methods were used to determine the iron contents in the samples; and four different methods, including amino acid analysis, were used for protein determination. The resulting iron stoichiometries were found to be method-dependent and vary over a wide range (+/- 20%). The uncertainties involved in the determination of iron stoichiometry are discussed.

ESR studies of cytochrome c3 from Desulfovibrio desulfuricans strain Norway 4: Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur, Cammack, R., Fauque G., Moura J. J. G., and Legall J. , Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Volume 784, Number 1, p.68-74, (1984) AbstractWebsite
n/a
Evaluation of Sweat Sampling Procedures for Human Stress Biomarkers Detection, Nunes, M. J., Moura J. J. G., Noronha J. P., Branco L. C., Samhan-Arias A., Sousa J. P., Rouco C., and Cordas C. , Analytica, Volume 3, p.178–194, (2022)
Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies, Palma, P. N., Moura I., Legall J., Van Beeumen J., Wampler J. E., and Moura J. J. , Biochemistry, May 31, Volume 33, Number 21, p.6394-407, (1994) AbstractWebsite

Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical ternary complex, formed between one molecule of Desulfovibrio salexigens flavodoxin and two molecules of cytochrome c3, is proposed. These molecular models of the complexes were constructed on the basis of complementarity of Coulombic electrostatic surface potentials, using the available X-ray structures of the isolated proteins and, when required, model structures (D. salexigens flavodoxin and Desulfovibrio desulfuricans ATCC 27774 cytochrome c3) predicted by homology modeling.

Evidence for a three-iron center in a ferredoxin from Desulfovibrio gigas. Mossbauer and EPR studies, Huynh, B. H., Moura J. J., Moura I., Kent T. A., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Apr 25, Volume 255, Number 8, p.3242-4, (1980) AbstractWebsite

The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with Mossbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and Mossbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The Mossbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796).

Evidence for antisymmetric exchange in cuboidal 3Fe-4S (+) clusters, Sanakis, Y., Macedo A. L., Moura I., Moura J. J. G., Papaefthymiou V., and Munck E. , Journal of the American Chemical Society, Dec 6, Volume 122, Number 48, p.11855-11863, (2000) AbstractWebsite

Iron-sulfur clusters with [3Fe-4S] cores are widely distributed in biological systems. In the oxidized state, designated [3Fe-4S](+), these electron-transfer agents have an electronic ground state with S = 1/2, and; they exhibit EPR signals centered at g = 2.01. It has been established by Mossbauer spectroscopy that the three iron sites of the cluster are high-spin Fe3+; and the general properties of the S = 1/2 ground state have been described with the exchange Hamiltonian H-exch = J(12)S(1).S-2 + J(23)S(2).S-3 + J(13)S(1).S-3 Some [3Fe-4S](+) clusters (type 1) have their g-values confined to the range between g = 2.03 and 2.00 while others (type 2) exhibit a continuous distribution of g-values down to g approximate to 1.85. Despite considerable efforts in various laboratories no model has emerged that explains the g-values of type 2 clusters. The 4.2 K spectra of all [3Fe-4S](+) clusters have broad features,which have been simulated in the past by using Fe-57 magnetic hyperfine tensors with anisotropies that are unusually large for high-spin feme sites. It is proposed here that antisymmetric exchange, H-AS = d.(S-1 x S-2 + S-2 x S-3 + S-3 x S-1), is the cause of the g-value shifts in type 2 clusters. We have been able to fit the EPR and Mossbauer spectra of the 3Fe clusters of beef heart aconitase and Desulfovibrio gigas ferredoxin II by using antisymmetric exchange in combination with distributed exchange coupling constants J(12), J(13), and J(23) (J-strain). While antisymmetric exchange is negligible for aconitase (which has a type 1 cluster), fits of the ferredoxin II spectra require \d\ approximate to 0.4 cm(-1). Our studies show that the data of both proteins can lie fit using the same isotropic Fe-57 magnetic hyperfine coupling constant for th three cluster sites, namely a -18.0 MHz for aconitase and a = -18.5 MHz for the D. gigas ferredoxin. The effects of antisymmetric exchange and J-strain on the Mossbauer and EPR spectra are discussed.

Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, Kruger, H. J., Huynh B. H., Ljungdahl P. O., Xavier A. V., Dervartanian D. V., Moura I., Peck, H. D. Jr., Teixeira M., Moura J. J., and Legall J. , J Biol Chem, Dec 25, Volume 257, Number 24, p.14620-3, (1982) AbstractWebsite

Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and Mossbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the Mossbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the Mossbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and Mossbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.

Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus, Eidsness, M. K., Scott R. A., Prickril B. C., Dervartanian D. V., Legall J., Moura I., Moura J. J., and Peck, H. D. Jr. , Proc Natl Acad Sci U S A, Jan, Volume 86, Number 1, p.147-51, (1989) AbstractWebsite

Ni and Se x-ray absorption spectroscopic studies of the [NiFeSe]hydrogenases from Desulfovibrio baculatus are described. The Ni site geometry is pseudo-octahedral with a coordinating ligand composition of 3-4 (N,O) at 2.06 A, 1-2 (S,Cl) at 2.17 A, and 1 Se at 2.44 A. The Se coordination environment consists of 1 C at 2.0 A and a heavy scatterer M (M = Ni or Fe) at approximately 2.4 A. These results are interpreted in terms of a selenocysteine residue coordinated to the Ni site. The possible role of the Ni-Se site in the catalytic activation of H2 is discussed.

Evidence for the formation of a cobalt-iron-sulfur (CoFe3S4) cluster in Desulfovibrio gigas ferredoxin II, Moura, Isabel, Moura Jose J. G., Munck Eckard, Papaefthymiou Vasilios, and Legall Jean , Journal of the American Chemical Society, 1986/01/01, Volume 108, Number 2, p.349-351, (1986) AbstractWebsite
n/a