Publications

Export 38 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Prediction of Signal Peptides and Signal Anchors of Cytocrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774 Using Bioinformatic Tools, Gonçalves, L. L., Almeida M. G., Lampreia J., Moura J. J. G., and Moura I. , Essays in Bioinformatics, Volume Vol. 368, p.203-208, (2005) Abstract

n/a

Predicting Protein-Protein Interactions Using BiGGER: Case Studies, Almeida, R. M., Dell'Acqua S., Krippahl L., Moura J. J. G., and Pauleta S. R. , Molecules, Volume 21, p.1037, (2016) Website
Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry, Sousa, E. H. S., Diógenes I. C. N., Lopes L. G. F., and Moura J. J. G. , J Biol Inorg Chem, Volume 25, p.685, (2020)
Physico-chemical and Spectroscopic Properties of the Monohemic Cytochrome C552 from Pseudomonas nautica 617, Saraiva, Lígia M., Fauque Guy, Besson Stéphane, and Moura Isabel , European Journal of Biochemistry, Volume 224, Number 3, p.1011-1017, (1994) AbstractWebsite

A c-type monohemic ferricytochrome c552 (11 kDa) was isolated from the soluble extract of a marine denitrifier, Pseudomonas nautica strain 617, grown under anaerobic conditions with nitrate as final electron acceptor. The NH2-terminal sequence and the amino acid composition of the cytochrome were determined. The heme iron of the cytochrome c552 has histidine-methionine as axial ligands, and a pH-dependent mid-point redox potential, equal to 250 mV at pH 7.6. The presence of methionine was demonstrated by visible, EPR and NMR spectroscopies. The assignment of most of the hemic protons was performed applying two-dimensional NOE spectroscopy (NOESY), and the aromatic region was assigned through two-dimensional correlated spectroscopy (COSY) experiments. The EPR spectrum of the oxidised form of the cytochrome c552 is typical of a low-spin ferric heme.

The photochemical reaction between uranyl-nitrate and azulene, Burrows, H. D., Cardoso A. C., Formosinho S. J., Gil Ampc, Miguel M. D., Barata B., and Moura J. J. G. , Journal of Photochemistry and Photobiology a-Chemistry, Sep 30, Volume 68, Number 3, p.279-287, (1992) AbstractWebsite

On photolysis of solutions of azulene and uranyl nitrate in alcohols, a dark, amorphous precipitate is formed. Various analytical techniques show that this is a mixture of a uranium salt and an organic component, suggested to be polyazulene. The effects of various parameters on the yield of the product have been studied and it is found that oxygen facilitates the reaction. Electron spin resonance studies show that the product is paramagnetic, in agreement with the established ease of oxidation of polyazulene, and suggest that it is formed via electron transfer from azulene to excited uranyl ion, followed by successive dimerizations and deprotonations of radical cation intermediates.

The photochemical reaction between uranyl nitrate and azulene, Burrows, Hugh D., Cardoso Augusto C., Formosinho Sebastião J., Gil Ana M. P. C., da Miguel Maria Graça M., Barata Belamino, and J.G. Moura José , Journal of Photochemistry and Photobiology A: Chemistry, Volume 68, Number 3, p.279-287, (1992) AbstractWebsite
n/a
Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis, Rodrigues, C. M., Sola S., Castro R. E., Laires P. A., Brites D., and Moura J. J. , J Lipid Res, Jun, Volume 43, Number 6, p.885-94, (2002) AbstractWebsite

Increased levels of unconjugated bilirubin, the end product of heme catabolism, impair crucial aspects of nerve cell function. In previous studies, we demonstrated that bilirubin toxicity may be due to cell death by apoptosis. To characterize the sequence of events leading to neurotoxicity, we exposed developing rat brain astrocytes and neurons to unconjugated bilirubin and investigated whether changes in membrane dynamic properties can mediate apoptosis. Bilirubin induced a rapid, dose-dependent increase in apoptosis, which was nevertheless preceded by impaired mitochondrial metabolism. Using spin labels and electron paramagnetic resonance spectroscopy analysis of whole cell and isolated mitochondrial membranes exposed to bilirubin, we detected major membrane perturbation. By physically interacting with cell membranes, bilirubin induced an almost immediate increase in lipid polarity sensed at a superficial level. The enhanced membrane permeability coincided with an increase in lipid fluidity and protein mobility and was associated with significant oxidative injury to membrane lipids. In conclusion, apoptosis of nerve cells induced by bilirubin is mediated by its primary effect at physically perturbing the cell membrane. Bilirubin directly interacts with membranes influencing lipid polarity and fluidity, protein order, and redox status. These data suggest that nerve cell membranes are primary targets of bilirubin toxicity.

Peroxidase-like activity of cytochrome b5 is triggered upon hemichrome formation in alkaline pH, Samhan-Arias, A., Maia L. B., Cordas C. M., Moura I., Gutierrez-Merino C., and Moura J. J. G. , BBA - Proteins and Proteomics, Volume 1866, p.373-378, (2018)
Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role, Gonzalez, P. J., Rivas M. G., Mota C. S., Brondino C. D., Moura I., and Moura J. J. G. , Coord Chem Rev, Volume 257, p.315-331, (2013)
Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum, Najmudin, S., Gonzalez P. J., Trincao J., Coelho C., Mukhopadhyay A., Cerqueira N. M., Romao C. C., Moura I., Moura J. J., Brondino C. D., and Romao M. J. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.737-53, (2008) AbstractWebsite

Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe-4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 A. The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH(2) ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (lambda = 1.77 A) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S-S distance between the sulfur ligand and the Sgamma atom of the molybdenum ligand Cys(A140) was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 A, indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with (15)N-labeled nitrate and in D(2)O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)-nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligand-based redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.

Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities, Cerqueira, N., Gonzalez P. J., Fernandes P. A., Moura J. J. G., and Ramos M. J. , Acc Chem Res, Volume 48, p.2875−2884, (2015)
Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium, Fauque, G., Czechowski M., Berlier Y. M., Lespinat P. A., Legall J., and Moura J. J. , Biochem Biophys Res Commun, May 15, Volume 184, Number 3, p.1256-60, (1992) AbstractWebsite

A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21. This protein appears to be 75% pure on SDS-gel electrophoresis showing two major bands of molecular mass around 55 and 15 kDa. This hydrogenase contains 0.6-0.7 nickel atom and 7-8 iron atoms per mole of enzyme and has a specific activity of 783 in the hydrogen uptake reaction, of 231 in the hydrogen production assay and of 84 in the deuterium-proton exchange reaction. The H2/HD ratio is lower than one in the D2-H+ exchange reaction. The enzyme is very sensitive to NO, relatively little inhibited by CO but unaffected by NO2-. The EPR spectrum of the native hydrogenase shows the presence of a [3Fe-4S] oxidized cluster and of a Ni(III) species.

Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase, Pauleta, S. R., Guerlesquin F., Goodhew C. F., Devreese B., Van Beeumen J., Pereira A. S., Moura I., and Pettigrew G. W. , Biochemistry, Sep 7, Volume 43, Number 35, p.11214-11225, (2004) AbstractWebsite

The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic- strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.