Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Gas chromatography mass spectrometry determination of acaricides from honey after a new fast ultrasonic-based solid phase micro-extraction sample treatment, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Mar 30, Volume 71, Number 5, p.1906-1914, (2007) AbstractWebsite

A method is reported for the determination of acaricides (amitraz, bromopropylate, coumaphos and fluvalinate) from honey by gas chromatography mass spectrometry after a new fast solid phase micro-extraction, SPME, procedure. Six different fibers were assessed for micro-extraction purpose studying the following variables: (i) SPME coating, (ii) extraction temperature, (iii) extraction time, (iv) desorption conditions and (v) agitation conditions. The new ultrasonic bath technology providing different sonication frequencies (35 and 130 kHz) and different working modes (Sweep, Standard and Degas) was studied and optimized for speeding up the acaricide micro-extraction. The best extraction results were achieved with the polyacrylate fiber. The extraction process was done in 30 min using the ultrasonic bath at 130 kHz in the Standard mode. Quality parameters of the proposed method show a good precision (<11%) and detection and quantitation limits lower than 6 and 15 ng/g, respectively, except for fluvalinate. Eleven Portuguese commercial honey samples were analyzed with the developed method in order to assess the performance of the method with real samples and to determine whether the concentration of acaricides in honey exceed their maximum residue levels (MRLs). Acaricide residues detected were lower than those established by the legislation. (c) 2006 Elsevier B.V. All rights reserved.

Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3, Almeida, R. M., Geraldes C. F., Pauleta S. R., and Moura J. J. , Inorg Chem, Nov 7, Volume 50, Number 21, p.10600-7, (2011) AbstractWebsite

Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 +/- 1 muM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.

Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774, Rebelo, J., Macieira S., Dias J. M., Huber R., Ascenso C. S., Rusnak F., Moura J. J., Moura I., and Romao M. J. , J Mol Biol, Mar 17, Volume 297, Number 1, p.135-46, (2000) AbstractWebsite

The aldehyde oxidoreductase (MOD) isolated from the sulfate reducer Desulfovibrio desulfuricans (ATCC 27774) is a member of the xanthine oxidase family of molybdenum-containing enzymes. It has substrate specificity similar to that of the homologous enzyme from Desulfovibrio gigas (MOP) and the primary sequences from both enzymes show 68 % identity. The enzyme was crystallized in space group P6(1)22, with unit cell dimensions of a=b=156.4 A and c=177.1 A, and diffraction data were obtained to beyond 2.8 A. The crystal structure was solved by Patterson search techniques using the coordinates of the D. gigas enzyme. The overall fold of the D. desulfuricans enzyme is very similar to MOP and the few differences are mapped to exposed regions of the molecule. This is reflected in the electrostatic potential surfaces of both homologous enzymes, one exception being the surface potential in a region identifiable as the putative docking site of the physiological electron acceptor. Other essential features of the MOP structure, such as residues of the active-site cavity, are basically conserved in MOD. Two mutations are located in the pocket bearing a chain of catalytically relevant water molecules. As deduced from this work, both these enzymes are very closely related in terms of their sequences as well as 3D structures. The comparison allowed confirmation and establishment of features that are essential for their function; namely, conserved residues in the active-site, catalytically relevant water molecules and recognition of the physiological electron acceptor docking site.

Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Raaijmakers, H., Macieira S., Dias J. M., Teixeira S., Bursakov S., Huber R., Moura J. J., Moura I., and Romao M. J. , Structure, Sep, Volume 10, Number 9, p.1261-72, (2002) AbstractWebsite

Desulfovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H(+) by buried waters and protonable amino acids and for CO(2) through a hydrophobic channel.

Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes, Carreira, C., Mestre O., Nunes R. F., Moura I., and Pauleta S. R. , PEERJ, Volume 6, p.DOI: 10.7717/peerj.5603, (2018)