Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3

Citation:
Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3, Almeida, R. M., Geraldes C. F., Pauleta S. R., and Moura J. J. , Inorg Chem, Nov 7, Volume 50, Number 21, p.10600-7, (2011)

Abstract:

Two cyclen-derived Gd probes, [Gd-DOTAM](3+) and [Gd-DOTP](5-) (DOTAM = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetamide; DOTP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonate)), were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins, Desulfovibrio gigas rubredoxin and Desulfovibrio gigas cytochrome c(3), were used as model partners. In a (1)H NMR titration it was shown that [Gd-DOTP](5-) binds to cytochrome c(3) near heme IV, causing pronounced PREs, characterized by line width broadenings of the heme methyl resonances at ratios as low as 0.08. A K(d) of 23 +/- 1 muM was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP](5-) binding to cytochrome c(3) at a molar ratio of 2. The other probe, [Gd-DOTAM](3+), caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19-G23 and W37-S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6-Y11, in particular) when cytochrome c(3) was added to this system. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites and since the interaction is reversible to structurally characterize protein complexes by better defining the complex interface.

Notes:

1520-510X (Electronic)0020-1669 (Linking)Journal ArticleResearch Support, Non-U.S. Gov't

Related External Link