Publications

Export 37 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617, Prudencio, M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F., Fauque G., Moura J. J., Tegoni M., Cambillau C., and Moura I. , Biochemistry, Apr 11, Volume 39, Number 14, p.3899-907, (2000) AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast, Raimundo, Joana, Vale Carlos, Canario Joao, Branco Vasco, and Moura Isabel , Environmental Pollution, Jun, Volume 158, Number 6, p.2094-2100, (2010) AbstractWebsite

Mercury, methyl-mercury (MeHg) and selenium were determined in digestive gland and mantle of Octopus vulgaris, from three areas of the Portuguese coast. To our knowledge these are the first data on MeHg in cephalopods. Concentrations were higher in the digestive gland and percentage of MeHg in mantle. Enhanced Hg and MeHg levels were obtained in digestive gland of specimens from Olhao (3.1-7.4 and 2.0-5.0 mu g g(-1) respectively). Differences between areas may be partially related to Hg availability. Relationships between concentrations in mantle and digestive gland pointed to proportional increases of Hg and MeHg in tissues of specimens from Matosinhos and Cascais, but relatively constant values in mantle of individuals from Olhao (higher contamination). Se:Hg molar ratio in digestive gland was 32 and 30 in octopus from Matosinhos and Cascais, respectively, and 5.4 from Olhao. The proximity to the unit suggests demethylation as response to elevated MeHg levels in digestive gland. (C) 2010 Elsevier Ltd. All rights reserved.

Sample treatment for protein identification by mass spectrometry-based techniques, Lopez-Ferrer, D., Canas B., Vazquez J., Lodeiro C., Rial-Otero R., Moura I., and Capelo J. L. , Trac-Trends in Analytical Chemistry, Nov, Volume 25, Number 10, p.996-1005, (2006) AbstractWebsite

Rapid identification of proteins is of primary importance for the analytical community. Protein-biomarker discovery for medical diagnostics or pharmacological purposes is becoming one of the hottest research topics. Moreover, rapid identification of proteins can help unambiguous bacterial and virus detection. In addition, the fast identification of bacteria can be used to beat bioterrorism. As a consequence, new analytical methodologies have emerged recently with the aim of making protein analysis as fast and as confident as possible. In this article, we critically review the new trends in sample treatment for protein identification and comment on the prospects for the future in this promising analytical area. (c) 2006 Elsevier Ltd. All rights reserved.

Simulation of the electrochemical behavior of multi-redox systems. Current potential studies on multiheme cytochromes, Moreno, C., Campos A., Teixeira M., Legall J., Montenegro M. I., Moura I., Van Dijk C., and Moura J. G. , Eur J Biochem, Dec 5, Volume 202, Number 2, p.385-93, (1991) AbstractWebsite

The direct unmediated electrochemical response of the tetrahemic cytochrome c3 isolated from sulfate reducers Desulfovibrio baculatus (DSM 1743) and D. vulgaris (strain Hildenborough), was evaluated using different electrode systems [graphite (edge cut), gold, semiconductor (InO2) and mercury)] and different electrochemical methods (cyclic voltammetry and differential pulse voltammetry). A computer program was developed for the theoretical simulation of a complete cyclic voltammetry curve, based on the method proposed by Nicholson and Shain [Nicholson, R.S. & Shain, I. (1964) Anal. Chem. 36, 706-723], using the Gauss-Legendre method for calculation of the integral equations. The experimental data obtained for this multi-redox center protein was deconvoluted in to the four redox components using theoretically generated cyclic voltammetry curves and the four mid-point reduction potentials determined. The pH dependence of the four reduction potentials was evaluated using the deconvolution method described.

A single histidine is required for activity of cytochrome c peroxidase from Paracoccus denitrificans, McGinnity, D. F., Devreese B., Prazeres S., Van Beeumen J., Moura I., Moura J. J., and Pettigrew G. W. , J Biol Chem, May 10, Volume 271, Number 19, p.11126-33, (1996) AbstractWebsite

The diheme cytochrome c peroxidase from Paracoccus denitrificans was modified with the histidine-specific reagent diethyl pyrocarbonate. At low excess of reagent, 1 mol of histidine was modified in the oxidized enzyme, and modification was associated with loss of the ability to form the active state. With time, the modification reversed, and the ability to form the active state was recovered. The agreement between the spectrophotometric measurement of histidine modification and radioactive incorporation using a radiolabeled reagent indicated little modification of other amino acids. However, the reversal of histidine modification observed spectrophotometrically was not matched by loss of radioactivity, and we propose a slow transfer of the ethoxyformyl group to an unidentified amino acid. The presence of CN- bound to the active peroxidatic site of the enzyme led to complete protection of the essential histidine from modification. Limited subtilisin treatment of the native enzyme followed by tryptic digest of the C-terminal fragment (residues 251-338) showed that radioactivity was located in a peptide containing a single histidine at position 275. We propose that this conserved residue, in a highly conserved region, is central to the function of the active mixed-valence state.

Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal), Raimundo, J., Vale C., Duarte R., and Moura I. , Science of the Total Environment, Feb 15, Volume 390, Number 2-3, p.410-416, (2008) AbstractWebsite

Cd and Pb and their sub-cellular distributions were determined in Cu Concentrations of Zn,, composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment. (c) 2007 Elsevier B.V. All rights reserved.

The surface-charge asymmetry and dimerisation of cytochrome c550 from Paracoccus denitrificans--implications for the interaction with cytochrome c peroxidase, Pettigrew, G. W., Gilmour R., Goodhew C. F., Hunter D. J., Devreese B., Van Beeumen J., Costa C., Prazeres S., Krippahl L., Palma P. N., Moura I., and Moura J. J. , Eur J Biochem, Dec 1, Volume 258, Number 2, p.559-66, (1998) AbstractWebsite

The implications of the dimeric state of cytochrome c550 for its binding to Paracoccus cytochrome c peroxidase and its delivery of the two electrons required to restore the active enzyme during catalysis have been investigated. The amino acid sequence of cytochrome c550 of Paracoccus denitrificans strain LMD 52.44 was determined and showed 21 differences from that of strain LMD 22.21. Based on the X-ray structure of the latter, a structure for the cytochrome c550 monomer from strain 52.44 is proposed and a dipole moment of 945 debye was calculated with an orientation close to the exposed haem edge. The behaviour of the cytochrome on molecular-exclusion chromatography is indicative of an ionic strength-dependent monomer (15 kDa)/dimer (30 kDa) equilibrium that can also be detected by 1H-NMR spectroscopy. The apparent mass of 50 kDa observed at very low ionic strength was consistent with the presence of a strongly asymmetric dimer. This was confirmed by cross-linking studies, which showed that a cross-linked species of mass 30 kDa on SDS behaved with an apparent mass of 50 kDa on molecular-exclusion chromatography. A programme which carried out and evaluated molecular docking of two monomers to give a dimer generated a most probable dimer in which the monomer dipoles lay almost antiparallel to each other. The resultant dipole moment of the dimer is therefore small. Although this finding calls into question the possibility of preorientation of a strongly asymmetrically charged cytochrome as it collides with a redox partner, the stoichiometry of complex formation with cytochrome c peroxidase as studied by 1H-NMR spectroscopy shows that it is the monomer that binds.

Synthesis of WO3 nanoparticles for biosensing applications, Santos, L., Silveira C. M., Elangovan E., Neto J. P., Nunes D., Pereira L., Martins R., Viegas J., Moura J. J. G., Todorovic S., Almeida M. G., and Fortunato E. M. , Sensors and Actuators B: Chemical, Volume 223, p.186-194, (2016)
Total lead and its stable isotopes in the digestive gland of Octopus vulgaris as a fingerprint, Raimundo, J., Vale C., Caetano M., Cesario R., and Moura I. , Aquatic Biology, 2009, Volume 6, Number 1-3, p.25-30, (2009) AbstractWebsite

We hypothesised that the isotopic signature of Pb in the digestive gland of the common octopus reflects the organisms' sources of Pb, and investigated whether isotopic Pb ratios are useful in characterising octopus populations. A total of 47 Octopus vulgaris individuals were captured between November 2005 and September 2006 in 2 areas of the Portuguese coast, near Matosinhos (Area A; NW coast) and Olhao (Area B; south coast), and digestive glands were analysed for total Pb and its stable isotopes. The same determinations were performed in 22 samples of surface sediments from the 2 areas. Pb concentrations in the digestive gland of specimens from Area B (2.8 to 13.0 mu g g(-1)) exceeded the values found in Area A (1.3 to 8.3 mu g g(-1)). A similar pattern was found for the isotopic Pb ratios: (206)Pb/(207)Pb was 1.173 to 1.185 for Area A and 1.165 to 1.172 for B; (206)Pb/(208)Pb was 0.476 to 0.487 for Area A and 0.318 to 0.483 for B. The different signatures of the digestive glands are in line with those observed in the surface sediments of the 2 coastal areas (e.g. (206)Pb/(207)Pb was 1.179 to 1.207 for Area A and 1.171 to 1.181 for B). However, the isotopic Pb signature of octopus was less radiogenic than that of sediments. Because octopus has a short life span (up to 24 mo) the signature reflects recent sources of Pb that have a less radiogenic signature. The Pb signature of surface sediments tends to integrate the record of the previous few years or decades, due to the frequent resuspension of the upper layer of coastal sediments. The mixing of sediments deposited during those periods results in higher isotopic Pb ratios (more radiogenic). The consistent differences between the 2 areas, in sediments and octopus, points towards the isotopic Pb signature as a possible useful tool to distinguish octopus populations.

Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe, Rial-Otero, R., Carreira R. J., Cordeiro F. M., Moro A. J., Santos H. M., Vale G., Moura I., and Capelo J. L. , Journal of Chromatography A, Sep 28, Volume 1166, Number 1-2, p.101-107, (2007) AbstractWebsite

Two different ultrasonic energy sources, the sonoreactor and the ultrasonic probe, are compared for enzymatic digestion of proteins for protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDl-TOF-MS) using the peptide mass fingerprint (PMF) procedure. Variables such as (i) trypsin/protein ratio; (ii) sonication time; (iii) ultrasound amplitude; and (iv) protein concentration are studied and compared. As a general rule, the trypsin/protein ratio and the minimum protein concentration successfully digested are similar with both ultrasonic energy sources. Results showed that the time needed to digest proteins was shorter with the ultrasonic probe, 60 s versus 120 s, for the same amplitude of sonication, 50%. However, lower standard deviations and cleaner MALDI-TOF-MS spectra were obtained with the sonoreactor. In addition, the sonoreactor device provided higher sample throughput (6 samples for the sonoreactor versus 1 sample for the ultrasonic probe) and easier sample handling for lower sample volumes (25 mu l). Finally, a comparison of both methodologies for the specific identification of the adenylylsulphate reductase alfa subunit from a complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was done as a proof of the procedure. (c) 2007 Elsevier B.V. All rights reserved.

Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to different electron acceptors - biosynthetic costs modulate substrate selection, Sousa, J. R., Silveira C. M., Fontes P., Roma-Rodrigues C., Fernandes A. R., Van Driessche G., Devreese B., Moura I., Moura J. J. G., and Almeida M. G. , Biochim Biophys Acta, Volume 1865, p.1455-1469, (2017)
Zinc-substituted Desulfovibrio gigas desulforedoxins: resolving subunit degeneracy with nonsymmetric pseudocontact shifts, Goodfellow, B. J., Nunes S. G., Rusnak F., Moura I., Ascenso C., Moura J. J., Volkman B. F., and Markley J. L. , Protein Sci, Oct, Volume 11, Number 10, p.2464-70, (2002) AbstractWebsite

Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S] center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers [Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with (15)N or (15)N + (13)C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx from 3D (15)N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the (13)C(alpha) shifts were obtained from an HNCA experiment. Comparison of (1)H-(15)N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for [Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues >/=8.5 A from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits.