Publications

Export 146 results:
Sort by: Author Title [ Type  (Asc)] Year
Book
Book Chapter
Molybdenum and tungsten-containing enzymes: an overview, Maia, L. B., Moura I., and Moura J. J. G. , Molybdenum and Tungsten Enzymes: Biochemistry, RSC Metallobiology Series No. 5 (ISBN: 978-1-78262-089-1). , p.1-80, (2017) mo_w_enzymes-rsc_book_biochemistry-chap_1.pdf
Nitrite biosensing using cytochrome c nitrite reductase: Towards a disposable strip electrode, Correia, C., Rodrigues M., Silveira C. M., Moura J. J. G., Ochoteco E., Jubete E., and Almeida M. G. , Biomedical Engineering Systems and Technologies. Series: Communications in Computer and Information Science, (2011)
Simple and Complex Iron-Sulfur Proteins in Sulfate Reducing Bacteria, Moura, Isabel, Pereira Alice S., Tavares Pedro, and Moura José J. G. , Advances in Inorganic Chemistry, Volume Volume 47, p.361-419, (1999) Abstract
n/a
Journal Article
Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase, Ghosh, S., Gorelsky S. I., Chen P., Cabrito I., Moura J. J., Moura I., and Solomon E. I. , J Am Chem Soc, Dec 24, Volume 125, Number 51, p.15708-9, (2003) AbstractWebsite

The tetranuclear CuZ cluster catalyzes the two-electron reduction of N2O to N2 and H2O in the enzyme nitrous oxide reductase. This study shows that the fully reduced 4CuI form of the cluster correlates with the catalytic activity of the enzyme. This is the first demonstration that the S = 1/2 form of CuZ can be further reduced. Complementary DFT calculations support the experimental findings and demonstrate that N2O binding in a bent mu-1,3-bridging mode to the 4CuI form is most efficient due to strong back-bonding from two reduced copper atoms. This back-donation activates N2O for electrophilic attack by a proton.

Amino acid sequence of a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800), Hausinger, R. P., Moura I., Moura J. J., Xavier A. V., Santos M. H., Legall J., and Howard J. B. , J Biol Chem, Dec 10, Volume 257, Number 23, p.14192-7, (1982) AbstractWebsite

The complete amino acid sequence for a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800) was determined by repetitive Edman degradation on the whole protein and peptides derived from trypsin, thermolysin, and Staphylococcus aureus protease digestion. The protein has 59 residues of which 8 are cysteines. The latter have the same spacing and distribution as found for the clostridial-type 2 x 4Fe:4S ferredoxins. Also, the sequence had evidence of internal homology which is indicative of gene duplication prior to the divergence of the archaebacteria and the eubacteria. This is the first sequence to be reported for a methanogen ferredoxin and only the fourth for a 3Fe:3S ferredoxin from any source.

The amino acid sequence of desulforedoxin, a new type of non heme iron protein from Desulfovibrio gigas, Bruschi, M., Moura I., Legall J., Xavier A. V., and Sieker L. C. , Biochemical and Biophysical Research Communications, Volume 90, Number 2, p.596-605, (1979) AbstractWebsite
n/a
Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate, Rodrigues, C. M., Sola S., Brito M. A., Brondino C. D., Brites D., and Moura J. J. , Biochem Biophys Res Commun, Feb 23, Volume 281, Number 2, p.468-74, (2001) AbstractWebsite

Mitochondria have been implicated in the cytotoxicity of amyloid beta-peptide (A beta), which accumulates as senile plaques in the brain of Alzheimer's disease patients. Tauroursodeoxycholate (TUDC) modulates cell death, in part, by preventing mitochondrial membrane perturbation. Using electron paramagnetic resonance spectroscopy analysis of isolated mitochondria, we tested the hypothesis that A beta acts locally in mitochondrial membranes to induce oxidative injury, leading to increased membrane permeability and subsequent release of caspase-activating factors. Further, we intended to determine the role of TUDC at preventing A beta-induced mitochondrial membrane dysfunction. The results demonstrate oxidative injury of mitochondrial membranes during exposure to A beta and reveal profound structural changes, including modified membrane lipid polarity and disrupted protein mobility. Cytochrome c is released from the intermembrane space of mitochondria as a consequence of increased membrane permeability. TUDC, but not cyclosporine A, almost completely abrogated A beta-induced perturbation of mitochondrial membrane structure. We conclude that A beta directly induces cytochrome c release from mitochondria through a mechanism that is accompanied by profound effects on mitochondrial membrane redox status, lipid polarity, and protein order. TUDC can directly suppress A beta-induced disruption of the mitochondrial membrane structure, suggesting a neuroprotective role for this bile salt.

Analysis of the activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase through an electron transfer chain, Paes de Sousa, P. M., Rodrigues D., Timoteo C. G., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Aug, Volume 16, Number 6, p.881-8, (2011) AbstractWebsite

The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an E(r)C'(i) catalytic mechanism. An intermolecular electron transfer rate constant of (4 +/- 1) x 10(5) M(-1) s(-1) was estimated for both forms of the enzyme, as well as a similar Michaelis-Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.

Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction, Correia, H., Marangon J., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , J Biol Inorg Chem, Volume 20, p.219-229, (2015)
Artefacts induced on c-type haem proteins by electrode surfaces, Paes de Sousa, P. M., Pauleta S. R., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Feb, Volume 16, Number 2, p.209-15, (2011) AbstractWebsite

In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met-His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c(3) from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.

Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study, Paes de Sousa, P. M., Pauleta S. R., Rodrigues D., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.779-87, (2008) AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria, Rodrigues, C. M., Sola S., Brito M. A., Brites D., and Moura J. J. , J Hepatol, Mar, Volume 36, Number 3, p.335-41, (2002) AbstractWebsite

BACKGROUND/AIMS: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. METHODS: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. RESULTS: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P<0.01), as well as disrupted protein mobility (P<0.001). Consistent with increased permeability, cytochrome c was released from the intermembrane space (P<0.01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P<0.01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. CONCLUSIONS: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.

Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios, Lu, Y., Sousa A., Franco R., Mangravita A., Ferreira G. C., Moura I., and Shelnutt J. A. , Biochemistry, Jul 2, Volume 41, Number 26, p.8253-8262, (2002) AbstractWebsite

Resonance Raman (RR) spectroscopy is used to examine porphyrin substrate, product, and inhibitor interactions with the active site of murine ferrochelatase (EC 4.99.1.1), the terminal enzyme in the biosynthesis of heme. The enzyme catalyzes in vivo Fe2+ chelation into protoporphyrin IX to give heme. The RR spectra of native ferrochelatase show that the protein, as isolated, contains varying amounts of endogenously bound high- or low-spin ferric heme, always at much less than 1 equiv. RR data on the binding of free-base protoporphyrin IX and its metalated complexes (Fe(III), Fe(II), and Ni(II)) to active wild-type protein were obtained at varying ratios of porphyrin to protein. The binding of ferric heme, a known inhibitor of the enzyme, leads to the formation of a low-spin six-coordinate adduct. Ferrous heme, the enzyme's natural product, binds in the ferrous high-spin five-coordinate state. Ni(II) protoporphyrin, a metalloporphyrin that has a low tendency toward axial ligation, becomes distorted when bound to ferrochelatase. Similarly for free-base protoporphyrin, the natural substrate of ferrochelatase, the RR spectra of porphyrin-protein complexes reveal a saddling distortion of the porphyrin. These results corroborate and extend our previous findings that porphyrin distortion, a crucial step of the catalytic mechanism, occurs even in the absence of bound metal substrate. Moreover, RR data reveal the presence of an amino acid residue in the active site of ferrochelatase which is capable of specific axial ligation to metals.

Biosensing nitrite using the system nitrite redutase/Nafion/methyl viologen--a voltammetric study, Almeida, M. G., Silveira C. M., and Moura J. J. , Biosens Bioelectron, May 15, Volume 22, Number 11, p.2485-92, (2007) AbstractWebsite

This work describes the construction and voltammetric characterization of a nitrite biosensor based on a cytochrome c-type nitrite reductase (ccNiR) and the Nafion ionomeric matrix loaded with methyl viologen as redox mediator. Despite the potential electrostatic repulsions between the anionic substrate and the Nafion sulfonate groups, the resulting bioelectrode exhibited electrocatalytic activity toward nitrite. This phenomenon must be due to the nonuniformity of the enzyme/Nafion membrane, which allows the direct interaction between the substrate and numerous enzyme molecules. Nevertheless, the anionic nature of Nafion exerted a certain diffusion barrier to nitrite, as revealed by the unusually elevated limits of the linear dynamic range and k(m)(app). The irregularity of the composite membrane also contributed to slow down the rate of charge transfer throughout the Nafion polymer. The level of viologens incorporated within the Nafion membrane had a strong influence in the analytical parameters: as much mediator was present, lower was the sensitivity and wider was the linear range. For an optimized ratio enzyme/mediator the sensitivity was 445+/-8 mA M(-1)cm(-2), within the linear range 75-800 microM; the lowest detected nitrite concentration was 60 microM. The operational stability of the biosensor and the influence of some possible interferences were evaluated.

Calcium-dependent conformation of a heme and fingerprint peptide of the diheme cytochrome c peroxidase from Paracoccus pantotrophus, Pauleta, S. R., Lu Y., Goodhew C. F., Moura I., Pettigrew G. W., and Shelnutt J. A. , Biochemistry, Jun 5, Volume 40, Number 22, p.6570-6579, (2001) AbstractWebsite

The structural changes in the heme macrocycle and substituents caused by binding of Ca2+ to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca2+-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca2+ or Mg2+. This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca2+ binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca2+ binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.

Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase, Conrath, K., Pereira A. S., Martins C. E., Timoteo C. G., Tavares P., Spinelli S., Kinne J., Flaudrops C., Cambillau C., Muyldermans S., Moura I., Moura J. J., Tegoni M., and Desmyter A. , Protein Sci, Mar, Volume 18, Number 3, p.619-28, (2009) AbstractWebsite

Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.

Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess, Nair, R. R., Silveira C. M., Diniz M. S., Almeida M. G., Moura J. J. G., and Rivas M. G. , J Biol Inorg Chem, Volume 20, p.311–322, (2015)
Characterization of the Dihemic Cytochrome C549 from the Marine Denitrifying Bacterium Pseudomonas nautica 617, Saraiva, L. M., Besson S., Fauque G., and Moura I. , Biochemical and Biophysical Research Communications, Volume 199, Number 3, p.1289-1296, (1994) AbstractWebsite
n/a
Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni, de Jong, G. A., Caldeira J., Sun J., Jongejan J. A., de Vries S., Loehr T. M., Moura I., Moura J. J., and Duine J. A. , Biochemistry, Jul 25, Volume 34, Number 29, p.9451-8, (1995) AbstractWebsite

Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

Chromosome aberrations in cattle raised on bracken fern pasture, Moura, J. W., Stocco dos Santos R. C., Dagli M. L., D'Angelino J. L., Birgel E. H., and Becak W. , Experientia, Sep 15, Volume 44, Number 9, p.785-8, (1988) AbstractWebsite

Thirteen cows maintained on natural bracken fern (Pteridium aquilinum) were analyzed cytogenetically. The frequency of structural chromosome aberrations detected in peripheral blood cells was significantly higher when compared to that detected in animals raised on pasture containing no bracken fern. We discuss the clastogenic action of fern and its synergistic action with infection by type 2 and 4 papilloma virus in the same animals.

Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009) AbstractWebsite

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

Construction of effective disposable biosensors for point-of-care testing of nitrite, Monteiro, T., Rodrigues P. R., Gonçalves A. L., Moura J. J. G., Anorga L., Jubete E., Piknova B., Schechter A. N., Silveira C. M., and Almeida M. G. , Talanta, Volume 142, p.246-251, (2015)
Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing, Serra, A. S., Jorge S. R., Silveira C. M., Moura J. J. G., Jubete E., Ochoteco E., Cabañero G., Grande H., and Almeida M. G. , Analytica Chimica Acta, Volume 693, Number 1–2, p.41-46, (2011) AbstractWebsite
n/a