Publications

Export 146 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase, Johnston, E. M., Dell'Acqua S., Ramos S., Pauleta S. R., Moura I., and Solomon E. I. , J Am Chem Soc, Volume 136, p.614–617, (2014)
One Electron Reduced Square Planar Bis(benzene-1,2-dithiolato) Copper Dianionic Complex and Redox Switch by O2/HO-, Maiti, B. K., Maia L. B., Pal K., Pakira B., Aviles T., Moura I., Pauleta S. R., Nuñez J. L., Rizzi A. C., Brondino C. D., Sarkar S., and Moura J. J. G. , Inorg Chem, Volume 53, p.12799-12808, (2014)
SiW11Fe@MIL-101(Cr) composite: A novel and versatile electrocatalyst, Fernandes, D. M., Granadeiro C. M., de M. Paes Sousa. P., Grazina R., Moura J. J. G., Silva P., Almeida Paz F. A., Cunha-Silva L., Balula S. S., and Freire C. , ChemElectroChem, Volume 1, p.1293-1300, (2014)
2013
Insights into the electrochemical behaviour of composite materials: Monovacant polyoxometalates porous metal-organic framework, Paes de Sousa, P. M., Grazina R., Barbosa A. D. S., de Castro Baltazar, Moura J. J. G., Cunha-Silva L., and Salete S. , Electrochim Acta, Volume 87, p.853-859, (2013)
Kinetic and structural studies of aldehyde oxidoreductase from Desulfovibrio gigas reveal a dithiolene-based chemistry for enzyme activation and inhibition by H2O2, Marangon, J., Correia H. D., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , PLoS One, Volume 8, p.e83234, (2013)
Rearrangement of Mo-Cu-S Cluster Reflects the Structural Instability of Orange Protein Cofactor, Maiti, B. K., Avilés T., Carepo M. S., Moura I., S.R. Pauleta, and Moura J. J. G. , Z Anorg Allg Chem, Volume 639, p.1361-1364, (2013)
2012
Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Marangon, J., de Sousa Paes P. M., Moura I., Brondino C. D., Moura J. J., and González P. J. , Biochim Biophys Acta, Volume 1817, Issue 7, p.1072-1082, (2012)
2011
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway, Folgosa, F., Cordas C. M., Santos J. A., Pereira A. S., Moura J. J., Tavares P., and Moura I. , Biochem J, Sep 15, Volume 438, Number 3, p.485-94, (2011) AbstractWebsite

SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8 x 10 M(1) . s(1) and 1.3 x 10 M(1) . s(1) for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2 x 10 M(1) . s(1) for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.

Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria, Mukhopadhyay, A., Kladova A. V., Bursakov S. A., Gavel O. Y., Calvete J. J., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., and Trincao J. , J Biol Inorg Chem, Jan, Volume 16, Number 1, p.51-61, (2011) AbstractWebsite

Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 A, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.

Artefacts induced on c-type haem proteins by electrode surfaces, Paes de Sousa, P. M., Pauleta S. R., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Feb, Volume 16, Number 2, p.209-15, (2011) AbstractWebsite

In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met-His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c(3) from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.

Analysis of the activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase through an electron transfer chain, Paes de Sousa, P. M., Rodrigues D., Timoteo C. G., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Aug, Volume 16, Number 6, p.881-8, (2011) AbstractWebsite

The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an E(r)C'(i) catalytic mechanism. An intermolecular electron transfer rate constant of (4 +/- 1) x 10(5) M(-1) s(-1) was estimated for both forms of the enzyme, as well as a similar Michaelis-Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.

Structural redox control in a 7Fe ferredoxin isolated from Desulfovibrio alaskensis, Grazina, R., de Sousa P. M., Brondino C. D., Carepo M. S., Moura I., and Moura J. J. , Bioelectrochemistry, Aug, Volume 82, Number 1, p.22-8, (2011) AbstractWebsite

The redox behaviour of a ferredoxin (Fd) from Desulfovibrio alaskensis was characterized by electrochemistry. The protein was isolated and purified, and showed to be a tetramer containing one [3Fe-4S] and one [4Fe-4S] centre. This ferredoxin has high homology with FdI from Desulfovibrio vulgaris Miyazaki and Hildenborough and FdIII from Desulfovibrio africanus. From differential pulse voltammetry the following signals were identified: [3Fe-4S](+1/0) (E(0')=-158+/-5mV); [4Fe-4S](+2/+1) (E(0')=-474+/-5mV) and [3Fe-4S](0/-2) (E(0')=-660+/-5mV). The effect of pH on these signals showed that the reduced [3Fe-4S](0) cluster has a pK'(red)(')=5.1+/-0.1, the [4Fe-4S](+2/+1) centre is pH independent, and the [3Fe-4S](0/-2) reduction is accompanied by the binding of two protons. The ability of the [3Fe-4S](0) cluster to be converted into a new [4Fe-4S] cluster was proven. The redox potential of the original [4Fe-4S] centre showed to be dependent on the formation of the new [4Fe-4S] centre, which results in a positive shift (ca. 70mV) of the redox potential of the original centre. Being most [Fe-S] proteins involved in electron transport processes, the electrochemical characterization of their clusters is essential to understand their biological function. Complementary EPR studies were performed.

Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to Improve the selectivity of nitrite biosensing, A.S., Serra, S. Jorge, C. Silveira, J.J.G. Moura, E. Jubete, E. Ochoteco, and G. Almeida M. , Anal Chim Acta, Volume 693, p.41-46, (2011)
Nitrite biosensing using cytochrome c nitrite reductase: Towards a disposable strip electrode, Correia, C., Rodrigues M., Silveira C. M., Moura J. J. G., Ochoteco E., Jubete E., and Almeida M. G. , Biomedical Engineering Systems and Technologies. Series: Communications in Computer and Information Science, (2011)
Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing, Serra, A. S., Jorge S. R., Silveira C. M., Moura J. J. G., Jubete E., Ochoteco E., Cabañero G., Grande H., and Almeida M. G. , Analytica Chimica Acta, Volume 693, Number 1–2, p.41-46, (2011) AbstractWebsite
n/a
2010
An efficient non-mediated amperometric biosensor for nitrite determination, Silveira, C. M., Gomes S. P., Araujo A. N., Montenegro M. C., Todorovic S., Viana A. S., Silva R. J., Moura J. J., and Almeida M. G. , Biosens Bioelectron, May 15, Volume 25, Number 9, p.2026-32, (2010) AbstractWebsite

In this paper we propose the construction of a new non-mediated electrochemical biosensor for nitrite determination in complex samples. The device is based on the stable and selective cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans, which has both high turnover and heterogeneous electron transfer rates. In opposition to previous efforts making use of several redox mediators, in this work we exploited the capacity of ccNiR to display a direct electrochemical response when interacting with pyrolytic graphite (PG) surfaces. To enable the analytical application of such bioelectrode the protein was successfully incorporated within a porous silica glass made by the sol-gel process. In the presence of nitrite, the ccNiR/sol-gel/PG electrode promptly displays catalytic currents indicating that the entrapped ccNiR molecules are reduced via direct electron transfer. This result is noteworthy since the protein molecules are caged inside a non-conductive silica network, in the absence of any mediator species or electron relay. At optimal conditions, the minimum detectable concentration is 120 nM. The biosensor sensitivity is 430 mA M(-1) cm(-2) within a linear range of 0.25-50 microM, keeping a stable response up to two weeks. The analysis of nitrites in freshwaters using the method of standard addition was highly accurated.

Rubredoxin mutant A51C unfolding dynamics: A Forster Resonance Energy Transfer study, Santos, Andrea, Duarte Americo G., Fedorov Alexander, Martinho Jose M. G., and Moura Isabel , Biophysical Chemistry, May, Volume 148, Number 1-3, p.131-137, (2010) AbstractWebsite

The unfolding dynamics of the rubredoxin mutant A51C (RdA51C) from Desulfovibrio vulgaris (DvRd) was studied on the temperature range from 25 degrees C to 90 degrees C and by incubation at 90 degrees C. By Forster Resonance Energy Transfer (FRET) the donor (D; Trp37) to acceptor (A; 1,5-IAEDANS) distance distribution was probed at several temperatures between 25 degrees C and 90 degrees C, and incubation times at 90 degrees C. From 25 degrees C to 50 degrees C the half-width distributions values (hw) are small and the presence of a discrete D-A distance was considered. At temperatures higher than 60 degrees C broader hw values were observed reflecting the existence of a distance distribution. The protein denaturation was only achieved by heating the solution for 2 h at 90 degrees C, as probed by the increase of the D-A mean distance. From Trp fluorescence it was shown that its vicinity was maintained until similar to 70 degrees C, being the protein hydrodynamic radius invariant until 50 degrees C. However, at similar to 70 degrees C a change in the partial unfolding kinetics indicates the disruption of specific H-bonds occurring in the hydrophobic core. The red shift of 13 nm, observed on the Trp37 emission, confirms the exposition of Trp to solvent after protein incubation at 90 degrees C for 2.5 h. (C) 2010 Elsevier B.V. All rights reserved.

Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes, Silveira, Celia M., Baur Jessica, Holzinger Michael, Moura Jose J. G., Cosnier Serge, and Gabriela Almeida M. , Electroanalysis, Dec, Volume 22, Number 24, p.2973-2978, (2010) AbstractWebsite

Single-walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10-fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4 +/- 0.1 A L mol(-1) cm(-2) and 1500 mu A cm(-2), respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90% and 60% of its initial sensitivity to nitrite after 20 and 248 days, respectively.

Ultrasonic multiprobe as a new tool to overcome the bottleneck of throughput in workflows for protein identification relaying on ultrasonic energy, Santos, H. M., Carreira R., Diniz M. S., Rivas M. G., Lodeiro C., Moura J. J., and Capelo J. L. , Talanta, Apr 15, Volume 81, Number 1-2, p.55-62, (2010) AbstractWebsite

We studied in this work the performance of the new ultrasonic multiprobe in terms of throughput, handling and robustness. The study was conducted using the multiprobe to speed two different proteomics workflows. The "classic" method relaying on overnight protein digestion (12h), was used as the standard procedure. This work clearly shows the importance of testing variables such as ultrasonic amplitude and ultrasonic time when adapting an ultrasonic-based treatment to a new ultrasonic device. The results here presented also shown and confirm the advantage of speed up sample treatment workflows with the aid of ultrasonic energy in combination with a 96-well plate. The methods compared were similar in terms of robustness, but the desalting free method was the fastest, requiring only 2 min/sample for completion. In addition it was also the simplest in terms of handling, since no desalting step was needed. The following standard proteins were successfully identified using the methods studied: bovine serum albumin, alpha-lactalbumin, ovalbumin, carbonic anhydrase, fructose-bisphosphate aldolase A, catalase, chymotrypsinogen A. As case study, the identification of the protein Split-Soret cytochrome c from D. desulfuricans ATCC 27774 was carried out.

Nitrite Biosensing via Selective Enzymes-A Long but Promising Route, Almeida, M. G., Serra A., Silveira C. M., and Moura J. J. , Sensors, Volume 10, Number 12, p.11530-55, (2010) AbstractWebsite

The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market.

Measuring the cytochrome c nitrite reductase activity-practical considerations on the enzyme assays, Silveira, C. M., Besson S., Moura I., Moura J. J., and Almeida M. G. , Bioinorg Chem Appl, (2010) AbstractWebsite

The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a systematic manner using two different spectrophotometric assays carried out in the presence of different redox mediators and a direct electrochemical approach. Solution assays have proved that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers and ammonium is always the main product of nitrite reduction. The catalytic parameters were discussed on the basis of the mediator reducing power and also taking into account the location of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst turnover increases with the reductive driving force.

2009
Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis, Kladova, A. V., Gavel O. Y., Mukhopaadhyay A., Boer D. R., Teixeira S., Shnyrov V. L., Moura I., Moura J. J., Romao M. J., Trincao J., and Bursakov S. A. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Sep 1, Volume 65, Number Pt 9, p.926-9, (2009) AbstractWebsite

Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.

A variable temperature spectroscopic study on Paracoccus pantotrophus pseudoazurin: Protein constraints on the blue Cu site, Xie, Xiangjin, Hadt Ryan G., Pauleta Sofia R., Gonzalez Pablo J., Un Sun, Moura Isabel, and Solomon Edward I. , Journal of Inorganic Biochemistry, Oct, Volume 103, Number 10, p.1307-1313, (2009) AbstractWebsite

The blue or Type 1 (T1) copper site of Paracoccus pantotrophus pseudoazurin exhibits significant absorption intensity in both the 450 and 600 nm regions. These are sigma and pi S(Cys) to Cu(2+) charge transfer (CT) transitions. The temperature dependent absorption, EPR, and resonance Raman (rR) vibrations enhanced by these bands indicate that a single species is present at all temperatures. This contrasts the temperature dependent behavior of the T1 center in nitrite reductase [S. Ghosh, X. Xie, A. Dey, Y. Sun, C. Scholes, E. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 4969-4974] which has a thioether ligand that is unconstrained by the protein. The lack of temperature dependence in the T1 site in pseudoazurin indicates the presence of a protein constraint similar to the blue Cu site in plastocyanin where the thioether ligand is constrained at 2.8 angstrom. However, plastocyanin exhibits only pi CT. This spectral difference between pseudoazurin and plastocyanin reflects a coupled distortion of the site where the axial thiorether in pseudoazurin is also constrained, but at a shorter Cu-S(Met) bond length. This leads to an increase in the Cu(2+)-S(Cys) bond length, and the site undergoes a partial tetragonal distortion in pseudoazurin. Thus, its ground state wavefunction has both sigma and pi character in the Cu(2+)-S(Cys) bond. (C) 2009 Elsevier Inc. All rights reserved.