Publications

Export 197 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
N
Nuclear-magnetic-resonance studies of Desulfuromonas acetoxidans cytochrome c551.5 (c7), Moura, J. G., Moore G. R., Williams R. J., Probst I., Legall J., and Xavier A. V. , Eur J Biochem, Nov 2, Volume 144, Number 3, p.433-40, (1984) AbstractWebsite

1H nuclear magnetic resonance (NMR) spectroscopy has been used to examine cytochrome c551.5 (c7) from the sulfur reducer, Desulfuromonas acetoxidans. This protein contains three hemes. Two stable oxidation states (the fully oxidized and the fully reduced) as well as intermediate oxidation states were studied. The axial ligands of the iron were found to be neutral histidines. The redox properties of cytochrome c7 were examined and good quantitative agreement found between the NMR results and previously reported redox potential measurements. The properties of cytochrome c7 are discussed together with those of the homologous tetraheme cytochromes c3 isolate from sulfate-reducing bacteria.

O
On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mossbauer and redox-titration studies, Huynh, B. H., Patil D. S., Moura I., Teixeira M., Moura J. J., Dervartanian D. V., Czechowski M. H., Prickril B. C., Peck, H. D. Jr., and Legall J. , J Biol Chem, Jan 15, Volume 262, Number 2, p.795-800, (1987) AbstractWebsite

The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by Mossbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic Mossbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Munck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Munck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The Mossbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.

Oxidation-reduction potentials of the hemes in cytochrome C3 from Desulfovibrio gigas in the presence and absence of ferredoxin by EPR spectroscopy, Xavier, A. V., Moura J. J., Legall J., and Dervartanian D. V. , Biochimie, Volume 61, Number 5-6, p.689-95, (1979) AbstractWebsite

1. Ferricytochrome c3 from D. gigas exhibits two low-spin ferric heme EPR resonances with gz-values at 2.959 and 2.853. Ferrocytochrome c3 is diamagnetic based on the absence of any EPR signals. 2. EPR potentiometric titrations result in the resolution of the two low-spin ferric heme resonances into two additional heme components representing in total the four hemes of the cytochrome, with EM values of -235 mV and -315 mV at heme resonance I and EM values of -235 mV and -306 mV at heme resonance II. 3. EPR spectroscopy has detected a significant diminution of intensity (approx. 60 p. 100) in the gx amplitude of ferricytochrome c3 in the presence of D. gigas ferredoxin II. The presence of ferredoxin II also causes a more negative shift in the EM of the second components of the signals at heme resonances I and II of cytochrome C3. Both observations suggest that an interaction has occurred between cytochrome C3 and ferredoxin II. 4. The results presented suggest that the heme ligand environment of ferricytochrome c3 from D. gigas is less perturbed and/or less asymmetric than environment for ferricytochrome c3 from D. vulgaris whose EPR behavior indicates the non-equivalence of all four hemes.

Oxidation-reduction studies of the Mo-(2Fe-2S) protein from Desulfovibrio gigas, Moura, J. J., Xavier A. V., Cammack R., Hall D. O., Bruschi M., and Legall J. , Biochem J, Aug 1, Volume 173, Number 2, p.419-25, (1978) AbstractWebsite

Potentiometric titration followed by e.p.r. measurements were used to determine the midpoint reduction potentials of the redox centres of a molybdenum-containing iron-sulphur protein previously isolated from Desulfovibrio gigas, a sulphate-reducing bacterium (Moura, Xavier, Bruschi, Le Gall, Hall & Cammack (1976) Biochem. Biophys. Res. Commun. 728 782-789; Moura, Xavier, Bruschi, Le Gall & Cabral (1977) J. Less Common Metals 54, 555-562). The iron-sulphur centres could readily be distinguished into three types by means of g values, temperature effect, oxidation-reduction potential values and reduction rates. The type-I Fe-S centres are observed at 77 K. They show mid-point potential values of -260mV (Fe-S type IA) and -440 mV (Fe-S type IB). Centres of types IA and IB appear to have similar spectra at 77 K and 24 K. The Fe-S type-II centres are only observed below 65 K and have a midpoint potential of -28mV. Long equilibration times (30 min) with dye mediators under reducing conditions were necessary to observe the very slow equilibrating molybdenum signals. The potential values associated with this signal were estimated to be approx. -415 mV for Mo(VI)/Mo(V) and-530mV for Mo(V)/Mo(IV).

Oxovanadium(IV) and amino acids—VI. The systems glycylglycine and glycylglycylglycine + VO2+; a potentiometric and spectroscopic study, Pessoa, Costa J., Luz S. M., Duarte R., Moura J. J. G., and Gillard R. D. , Polyhedron, Volume 12, Number 23, p.2857-2867, (1993) AbstractWebsite
n/a
Oxovanadium(IV) complexes of the dipeptides glycyl-L-aspartic acid, L-aspartylglycine and related ligands; a spectroscopic and potentiometric study, Pessoa, J. C., Gajda T., Gillard R. D., Kiss T., Luz S. M., Moura J. J. G., Tomaz I., Telo J. P., and Torok I. , Journal of the Chemical Society-Dalton Transactions, Nov 7, Number 21, p.3587-3600, (1998) AbstractWebsite

The equilibria in the systems VO2+ + L (L = Gly-L-Asp, L-Asp-Gly, N-acetyl-L-aspartic acid or succinic acid) have been studied at 25 degrees C and 0.2 mol dm(3) K(CI) medium by a combination of potentiometric and spectroscopic methods (ESR, circular dichroism and visible absorption). Formation constants were calculated from pH-metric data with total oxovanadium(Iv) concentrations of(0.6-4) x 10(-3) mol dm(-3) and ligand-to-metal (L:M) ratios of 2-8 (AspGly) or 4-15: 1 (other systems). The position of the Asp residue in the peptide chain affects the co-ordination mode of the ligands: while in the GlyAsp system bis complexes start to form at pH less than 2, for AspGly only 1 : 1 complexes form, with relatively high CD signal. The co-ordination behaviour of N-acetyl-L-aspartic and succinic acids is similar. The results of potentiometric and spectroscopic methods are self consistent. Isomeric structures are discussed for each stoichiometry proposed and the results compared with those for L-aspartic acid and dipeptides with non-coordinating side chains.

P
Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium, Fauque, G., Czechowski M., Berlier Y. M., Lespinat P. A., Legall J., and Moura J. J. , Biochem Biophys Res Commun, May 15, Volume 184, Number 3, p.1256-60, (1992) AbstractWebsite

A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21. This protein appears to be 75% pure on SDS-gel electrophoresis showing two major bands of molecular mass around 55 and 15 kDa. This hydrogenase contains 0.6-0.7 nickel atom and 7-8 iron atoms per mole of enzyme and has a specific activity of 783 in the hydrogen uptake reaction, of 231 in the hydrogen production assay and of 84 in the deuterium-proton exchange reaction. The H2/HD ratio is lower than one in the D2-H+ exchange reaction. The enzyme is very sensitive to NO, relatively little inhibited by CO but unaffected by NO2-. The EPR spectrum of the native hydrogenase shows the presence of a [3Fe-4S] oxidized cluster and of a Ni(III) species.

Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis, Rodrigues, C. M., Sola S., Castro R. E., Laires P. A., Brites D., and Moura J. J. , J Lipid Res, Jun, Volume 43, Number 6, p.885-94, (2002) AbstractWebsite

Increased levels of unconjugated bilirubin, the end product of heme catabolism, impair crucial aspects of nerve cell function. In previous studies, we demonstrated that bilirubin toxicity may be due to cell death by apoptosis. To characterize the sequence of events leading to neurotoxicity, we exposed developing rat brain astrocytes and neurons to unconjugated bilirubin and investigated whether changes in membrane dynamic properties can mediate apoptosis. Bilirubin induced a rapid, dose-dependent increase in apoptosis, which was nevertheless preceded by impaired mitochondrial metabolism. Using spin labels and electron paramagnetic resonance spectroscopy analysis of whole cell and isolated mitochondrial membranes exposed to bilirubin, we detected major membrane perturbation. By physically interacting with cell membranes, bilirubin induced an almost immediate increase in lipid polarity sensed at a superficial level. The enhanced membrane permeability coincided with an increase in lipid fluidity and protein mobility and was associated with significant oxidative injury to membrane lipids. In conclusion, apoptosis of nerve cells induced by bilirubin is mediated by its primary effect at physically perturbing the cell membrane. Bilirubin directly interacts with membranes influencing lipid polarity and fluidity, protein order, and redox status. These data suggest that nerve cell membranes are primary targets of bilirubin toxicity.

Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry, Sousa, E. H. S., Diógenes I. C. N., Lopes L. G. F., and Moura J. J. G. , J Biol Inorg Chem, Volume 25, p.685, (2020)
Prediction of Signal Peptides and Signal Anchors of Cytocrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774 Using Bioinformatic Tools, Gonçalves, L. L., Almeida M. G., Lampreia J., Moura J. J. G., and Moura I. , Essays in Bioinformatics, Volume Vol. 368, p.203-208, (2005) Abstract

n/a

Preliminary crystallographic analysis and further characterization of a dodecaheme cytochrome c from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Sieker L. C., Morais J., Carrondo M. A., Lampreia J., Costa C., Moura J. J., Moura I., and Legall J. , Acta Crystallogr D Biol Crystallogr, Nov 1, Volume 52, Number Pt 6, p.1202-8, (1996) AbstractWebsite

Dodecaheme cytochrome c has been purified from Desulfovibrio (D.) desulfuricans ATCC 27774 cells grown under both nitrate and sulfate-respiring conditions. Therefore, it is likely to play a role in the electron-transfer system of both respiratory chains. Its molecular mass (37768 kDa) was determined by electrospray mass spectrometry. Its first 39 amino acids were sequenced and a motif was found between amino acids 32 and 37 that seems to exist in all the cytochromes of the c(3) type from sulfate-reducing bacteria sequenced at present. The midpoint redox potentials of this cytochrome were estimated to be -68, -120, -248 and -310 mV. Electron paramagnetic resonance spectroscopy of the oxidized cytochrome shows several low-spin components with a g(max) spreading from 3.254 to 2.983. Two crystalline forms were obtained by vapour diffusion from a solution containing 2% PEG 6000 and 0.25-0.75 M acetate buffer pH = 5.5. Both crystals belong to monoclinic space groups: one is P2(1), with a = 61.00, b = 106.19, c = 82.05 A, beta = 103.61 degrees, and the other is C2 with a = 152.17, b = 98.45, c = 89.24 A, beta = 119.18 degrees. Density measurements of the P2(1) crystals suggest that there are two independent molecules in the asymmetric unit. Self-rotation function calculations indicate, in both crystal forms, the presence of a non-crystallographic axis perpendicular to the crystallographic twofold axis. This result and the calculated values for the volume per unit molecular weight of the C2 crystals suggest the presence of two or four molecules in the asymmetric unit.

Preliminary crystallographic analysis of the oxidized form of a two mono-nuclear iron centres protein from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Carrondo M. A., Tavares P., Moura J. J., Moura I., Fulop V., Hajdu J., and Legall J. , Protein Sci, Jun, Volume 5, Number 6, p.1189-91, (1996) AbstractWebsite

Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 A and c = 63.2 A; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 A, b = 80.9 A, c = 53.9 A, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function.

The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Legall, J., Ljungdahl P. O., Moura I., Peck, H. D. Jr., Xavier A. V., Moura J. J., Teixera M., Huynh B. H., and Dervartanian D. V. , Biochem Biophys Res Commun, May 31, Volume 106, Number 2, p.610-6, (1982) AbstractWebsite
n/a
Primary sequence, oxidation-reduction potentials and tertiary-structure prediction of Desulfovibrio desulfuricans ATCC 27774 flavodoxin, Caldeira, J., Palma P. N., Regalla M., Lampreia J., Calvete J., Schafer W., Legall J., Moura I., and Moura J. J. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.987-95, (1994) AbstractWebsite

Flavodoxin was isolated and purified from Desulfovibrio desulfuricans ATCC 27774, a sulfate-reducing organism that can also utilize nitrate as an alternative electron acceptor. Mid-point oxidation-reduction potentials of this flavodoxin were determined by ultraviolet/visible and EPR methods coupled to potentiometric measurements and their pH dependence studied in detail. The redox potential E2, for the couple oxidized/semiquinone forms at pH 6.7 and 25 degrees C is -40 mV, while the value for the semiquinone/hydroquinone forms (E1), at the same pH, -387 mV. E2 varies linearly with pH, while E1 is independent of pH at high values. However, at low pH (< 7.0), this value is less negative, compatible with a redox-linked protonation of the flavodoxin hydroquinone. A comparative study is presented for Desulfovibrio salexigens NCIB 8403 flavodoxin [Moura, I., Moura, J.J.G., Bruschi, M. & LeGall, J. (1980) Biochim. Biophys. Acta 591, 1-8]. The complete primary amino acid sequence was obtained by automated Edman degradation from peptides obtained by chemical and enzymic procedures. The amino acid sequence was confirmed by FAB/MS. Using the previously determined tridimensional structure of Desulfovibrio vulgaris flavodoxin as a model [similarity, 48.6%; Watenpaugh, K.D., Sieker, L.C., Jensen, L.H., LeGall, J. & Dubourdieu M. (1972) Proc. Natl Acad. Sci. USA 69, 3185-3188], the tridimensional structure of D. desulfuricans ATCC 27774 flavodoxin was predicted using AMBER force-field calculations.

Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins, Devreese, B., Tavares P., Lampreia J., Van Damme N., Legall J., Moura J. J., Van Beeumen J., and Moura I. , FEBS Lett, May 6, Volume 385, Number 3, p.138-42, (1996) AbstractWebsite

The primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a redox protein with two mononuclear iron sites, was determined by automatic Edman degradation and mass spectrometry of the composing peptides. It contains 125 amino acid residues of which five are cysteines. The first four, Cys-9, Cys-12, Cys-28 and Cys-29, are responsible for the binding of Center I which has a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from D. gigas. The remaining Cys-115 is proposed to be involved in the coordination of Center II, which is probably octahedrally coordinated with predominantly nitrogen/oxygen containing ligands as previously suggested by Mossbauer and Raman spectroscopy.

Proteins containing the factor F430 from methanosarcina barkeri and methanobacterium thermoautotrophicum: Isolation and properties, Moura, Isabel, Moura José J. G., Santos Helena, Xavier Antonio V., Burch Gary, Peck Jr Harry D., and Legall Jean , Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Volume 742, Number 1, p.84-90, (1983) AbstractWebsite
n/a
Proteómica: a Interface entre a Biologia Molecular e a Biochemistry de Proteínas, Almeida, G., Rodrigues C., and Lampreia J. , Bol. Soc. Port. Química, Volume 82, p.49-56, (2001) Abstract
n/a
Proton NMR spectra of rubredoxins: new resonances assignable to .alpha.-CH and .beta.-CH2 hydrogens of cysteinate ligands to iron(II), Werth, Mark T., Kurtz Donald M., Moura Isabel, and Legall Jean , Journal of the American Chemical Society, 1987/01/01, Volume 109, Number 1, p.273-275, (1987) AbstractWebsite
n/a
Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands, Fauque, G., Lino A. R., Czechowski M., Kang L., Dervartanian D. V., Moura J. J., Legall J., and Moura I. , Biochim Biophys Acta, Aug 1, Volume 1040, Number 1, p.112-8, (1990) AbstractWebsite

A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).

Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center, Moura, I., Tavares P., Moura J. J., Ravi N., Huynh B. H., Liu M. Y., and Legall J. , J Biol Chem, Dec 15, Volume 265, Number 35, p.21596-602, (1990) AbstractWebsite

A new type of non-heme iron protein was purified to homogeneity from extracts of Desulfovibrio desulfuricans (ATCC 27774) and Desulfovibrio vulgaris (strain Hildenborough). This protein is a monomer of 16-kDa containing two iron atoms per molecule. The visible spectrum has maxima at 495, 368, and 279 nm and the EPR spectrum of the native form shows resonances at g = 7.7, 5.7, 4.1 and 1.8 characteristic of a high-spin ferric ion (S = 5/2) with E/D = 0.08. Mossbauer data indicates the presence of two types of iron: an FeS4 site very similar to that found in desulforedoxin from Desulfovibrio gigas and an octahedral coordinated high-spin ferrous site most probably with nitrogen/oxygen-containing ligands. Due to this rather unusual combination of active centers, this novel protein is named desulfoferrodoxin. Based on NH2-terminal amino acid sequence determined so far, the desulfoferrodoxin isolated from D. desulfuricans (ATCC 27774) appears to be a close analogue to a recently discovered gene product from D. vulgaris (Brumlik, M.J., and Voordouw, G. (1989) J. Bacteriol. 171, 49996-50004), which was suggested to be a rubredoxin oxidoreductase. However, reduced pyridine nucleotides failed to reduce the desulforedoxin-like center of this new protein.

Purification and characterization of three proteins from a halophilic sulfate-reducing bacterium,<i>Desulfovibrio salexigens</i&gt, Czechowski, M., Fauque G., Galliano N., Dimon B., Moura I., Moura J. J. G., Xavier A. V., Barato B. A. S., Lino A. R., and Legall J. , Journal of Industrial Microbiology & Biotechnology, Volume 1, Number 3, p.139-147, (1986) AbstractWebsite
n/a
Purification and preliminary characterization of tetraheme cytochrome c3 and adenylylsulfate reductase from the peptidolytic sulfate-reducing bacterium Desulfovibrio aminophilus DSM 12254, Lopez-Cortes, A., Bursakov S., Figueiredo A., Thapper A. E., Todorovic S., Moura J. J., Ollivier B., Moura I., and Fauque G. , Bioinorg Chem Appl, p.81-91, (2005) AbstractWebsite

Two proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three chromatographic steps (DEAE-Biogel A, Source 15, and Superdex 200 columns). It contains two different subunits with molecular masses of 75 and 18 kDa. The fraction after the last purification step had a purity index (A(278nm) / A(388nm)) of 5.34, which was used for further EPR spectroscopic studies. The D. aminophilus APS reductase is very similar to the homologous enzymes isolated from D. gigas and D. desulfuricans ATCC 27774. A tetraheme cytochrome c(3) (His-heme iron-His) has been purified in three chromatographic steps (DEAE- Biogel A, Source 15, and Biogel-HTP columns) and preliminarily characterized. It has a purity index ([A(553nm) - A(570nm)](red) / A(280nm)) of 2.9 and a molecular mass of around 15 kDa, and its spectroscopic characterization (NMR and EPR) has been carried out. This hemoprotein presents similarities with the tetraheme cytochrome c(3) from Desulfomicrobium (Des.) norvegicum (NMR spectra, and N-terminal amino acid sequence).

Purification, characterization and biological activity of three forms of ferredoxin from the sulfate-reducing bacterium Desulfovibrio gigas, Bruschi, M., Hatchikian C., Legall J., Moura J. J., and Xavier A. V. , Biochim Biophys Acta, Nov 9, Volume 449, Number 2, p.275-84, (1976) AbstractWebsite

Three forms of ferredoxin FdI, FdI', and FdII have been isolated from Desulfovibrio gigas, a sulfate reducer. They are separated by a combination of DEAE-cellulose and gel filtration chromatographic procedures. FdI and FdI' present a slight difference in isoelectric point which enables the separation of the two forms over DEAE-cellulose, while FdII is easily separated from the two other forms by gel filtration. The three forms have the same amino acid composition and are isolated in different aggregation states. Molecular weight determinations by gel filtration gave values of 18 000 for FdI and FdI' and 24 000 for FdII, whereas a value of 6000 is determined when dissociation is accomplished with sodium dodecyl sulfate. The electronic spectra are different and their ultraviolet-visible absorbance rations are 0.77, 0.87 and 0.68 respectively for FdI, FdI' and FdII. Despite these differences, the physiological activities of the three forms are similar as far as the reduction of sulfite by molecular hydrogen is concerned.

Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800), Fauque, G., Teixeira M., Moura I., Lespinat P. A., Xavier A. V., Dervartanian D. V., Peck, H. D. Jr., Legall J., and Moura J. G. , Eur J Biochem, Jul 2, Volume 142, Number 1, p.21-8, (1984) AbstractWebsite

A soluble hydrogenase from the methanogenic bacterium, Methanosarcina barkeri (DSM 800) has been purified to apparent electrophoretic homogeneity, with an overall 550-fold purification, a 45% yield and a final specific activity of 270 mumol H2 evolved min-1 (mg protein)-1. The hydrogenase has a high molecular mass of approximately equal to 800 kDa and subunits with molecular masses of approximately equal to 60 kDa. The enzyme is stable to heating at 65 degrees C and to exposure to air at 4 degrees C in the oxidized state for periods up to a week. The overall stability of this enzyme is compared with other hydrogenase isolated from strict anaerobic sulfate-reducing bacteria. Ms. barkeri hydrogenase shows an absorption spectrum typical of a non-heme iron protein with maxima at 275 nm, 380 nm and 405 nm. A flavin component, identified as FMN or riboflavin was extracted under acidic conditions and quantified to approximately one flavin molecule per subunit. In addition to this component, 8-10 iron atoms and 0.6-0.8 nickel atom were also detected per subunit. The electron paramagnetic resonance (EPR) spectrum of the native enzyme shows a rhombic signal with g values at 2.24, 2.20 and approximately equal to 2.0. probably due to nickel which is optimally measured at 40 K but still detectable at 77 K. In the reduced state, using dithionite or molecular hydrogen as reductants, at least two types of g = 1.94 EPR signals, due to iron-sulfur centers, could be detected and differentiated on the basis of power and temperature dependence. Center I has g values at 2.04, 1.90 and 1.86, while center II has g values at 2.08, 1.93 and 1.85. When the hydrogenase is reduced by hydrogen or dithionite the rhombic EPR species disappears and is replaced by other EPR-active species with g values at 2.33, 2.23, 2.12, 2.09, 2.04 and 2.00. These complex signals may represent different nickel species and are only observable at temperatures higher than 20 K. In the native preparation, at high temperatures (T greater than 35 K) or in partially reduced samples, a free radical due to the flavin moiety is observed. The EPR spectrum of reduced hydrogenase in 80% Me2SO presents an axial type of spectrum only detectable below 30 K.

R
REDOX AND SPIN-STATE CONTROL OF THE ACTIVITY OF A DIHEME CYTOCHROME-C PEROXIDASE - SPECTROSCOPIC STUDIES, Prazeres, S., Moura I., Gilmour R., Pettigrew G., Ravi N., and Huynh B. H. , Nuclear Magnetic Resonance of Paramagnetic Macromolecules, Volume 457, p.141-163, (1995) Abstract
n/a