Publications

Export 99 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Dissimilatory Nitrate Reductase, Romão, M. J., Dias J. M., and Moura I. , Handbook of Metalloproteins , p.1075-1085, (2001) Abstract
n/a
EPR spectroscopy on mononuclear molybdenum-containing enzymes, Maia, L. B., Moura I., and Moura J. J. G. , Future Directions in Metalloprotein and Metalloenzyme Research, Biological Magnetic Resonance, Vol. 33 (ISBN: 978-3-319-59100-1), Cham, p.55-101, (2017) Abstract

The biological relevance of molybdenum was demonstrated in the early 1950s-1960s, by Bray, Beinert, Lowe, Massey, Palmer, Ehrenberg, Pettersson, Vänngård, Hanson and others, with ground-breaking studies performed, precisely, by electron paramagnetic resonance (EPR) spectroscopy. Those earlier studies, aimed to investigate the mammalian xanthine oxidase and avian sulfite oxidase enzymes, demonstrated the surprising biological reduction of molybdenum to the paramagnetic Mo5+. Since then, EPR spectroscopy, alongside with other spectroscopic methods and X-ray crystallography, has contributed to our present detailed knowledge about the active site structures, catalytic mechanisms and structure/activity relationships of the molybdenum-containing enzymes.
This Chapter will provide a perspective on the contribution that EPR spectroscopy has made to some selected systems. After a brief overview on molybdoenzymes, the Chapter will be focused on the EPR studies of mammalian xanthine oxidase, with a brief account on the prokaryotic aldehyde oxidoreductase, nicotinate dehydrogenase and carbon monoxide dehydrogenase, vertebrate sulfite oxidase, and prokaryotic formate dehydrogenases and nitrate reductases.

Molybdenum and tungsten-containing enzymes: an overview, Maia, L. B., Moura I., and Moura J. J. G. , Molybdenum and Tungsten Enzymes: Biochemistry, RSC Metallobiology Series No. 5 (ISBN: 978-1-78262-089-1). , p.1-80, (2017) mo_w_enzymes-rsc_book_biochemistry-chap_1.pdf
REDOX AND SPIN-STATE CONTROL OF THE ACTIVITY OF A DIHEME CYTOCHROME-C PEROXIDASE - SPECTROSCOPIC STUDIES, Prazeres, S., Moura I., Gilmour R., Pettigrew G., Ravi N., and Huynh B. H. , Nuclear Magnetic Resonance of Paramagnetic Macromolecules, Volume 457, p.141-163, (1995) Abstract
n/a
[15] Characterization of three proteins containing multiple iron sites: Rubrerythrin, desulfoferrodoxin, and a protein containing a six-iron cluster, Moura, Isabel, Tavares Pedro, and Ravi Natarajan , Methods in Enzymology, Volume Volume 243, p.216-240, (1994) Abstract
n/a
[16] Adenylylsulfate reductases from sulfate-reducing bacteria, Lampreia, Jorge, Pereira Alice S., and Moura José J. G. , Methods in Enzymology, Volume Volume 243, p.241-260, (1994) Abstract
n/a
[20] Low-spin sulfite reductases, Moura, Isabel, and Lino Ana Rosa , Methods in Enzymology, Volume Volume 243, p.296-303, (1994) Abstract
n/a
[21] Hexaheme nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774), Liu, Ming-Cheh, Costa Cristina, and Moura Isabel , Methods in Enzymology, Volume Volume 243, p.303-319, (1994) Abstract
n/a
Journal Article
17O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas, Carepo, M., Tierney D. L., Brondino C. D., Yang T. C., Pamplona A., Telser J., Moura I., Moura J. J., and Hoffman B. M. , J Am Chem Soc, Jan 16, Volume 124, Number 2, p.281-6, (2002) AbstractWebsite

Crystallographic studies of the hydrogenases (Hases) from Desulfovibrio gigas (Dg) and Desulfovibrio vulgaris Miyazaki (DvM) have revealed heterodinuclear nickel-iron active centers in both enzymes. The structures, which represent the as-isolated (unready) Ni-A (S = (1)/(2)) enzyme state, disclose a nonprotein ligand (labeled as X) bridging the two metals. The bridging atom was suggested to be an oxygenic (O(2)(-) or OH(-)) species in Dg Hase and an inorganic sulfide in DvM Hase. To determine the nature and chemical characteristics of the Ni-X-Fe bridging ligand in Dg Hase, we have performed 35 GHz CW (17)O ENDOR measurements on the Ni-A form of the enzyme, exchanged into H(2)(17)O, on the active Ni-C (S = (1)/(2)) form prepared by H(2)-reduction of Ni-A in H(2)(17)O, and also on Ni-A formed by reoxidation of Ni-C in H(2)(17)O. In the native state of the protein (Ni-A), the bridging ligand does not exchange with the H(2)(17)O solvent. However, after a reduction/reoxidation cycle (Ni-A --> Ni-C --> Ni-A), an (17)O label is introduced at the active site, as seen by ENDOR. Detailed analysis of a 2-D field-frequency plot of ENDOR spectra taken across the EPR envelope of Ni-A((17)O) shows that the incorporated (17)O has a roughly axial hyperfine tensor, A((17)O) approximately [5, 7, 20] MHz, discloses its orientation relative to the g tensor, and also yields an estimate of the quadrupole tensor. The substantial isotropic component (a(iso)((17)O) approximately 11 MHz) of the hyperfine interaction indicates that a solvent-derived (17)O is indeed a ligand to Ni and thus that the bridging ligand X in the Ni-A state of Dg Hase is indeed an oxygenic (O(2)(-) or OH(-)) species; comparison with earlier EPR results by others indicates that the same holds for Ni-B. The small (57)Fe hyperfine coupling seen previously for Ni-A (A((57)Fe) approximately 0.9 MHz) is now shown to persist in Ni-C, A((57)Fe) approximately 0.8 MHz. However, the (17)O signal is lost upon reductive activation to the Ni-C state; reoxidation to Ni-A leads to the reappearance of the signal. Consideration of the electronic structure of the EPR-active states of the dinuclear center leads us to suggest that the oxygenic bridge in Ni-A(B) is lost in Ni-C and is re-formed from solvent upon reoxidation to Ni-A. This implies that the reductive activation to Ni-C opens Ni/Fe coordination sites which may play a central role in the enzyme's activity.

The active centers of adenylylsulfate reductase from Desulfovibrio gigas. Characterization and spectroscopic studies, Lampreia, J., Moura I., Teixeira M., Peck, H. D. Jr., Legall J., Huynh B. H., and Moura J. J. , Eur J Biochem, Mar 30, Volume 188, Number 3, p.653-64, (1990) AbstractWebsite

In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). Mossbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical Mossbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.

Amino acid sequence of a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800), Hausinger, R. P., Moura I., Moura J. J., Xavier A. V., Santos M. H., Legall J., and Howard J. B. , J Biol Chem, Dec 10, Volume 257, Number 23, p.14192-7, (1982) AbstractWebsite

The complete amino acid sequence for a 3Fe:3S ferredoxin from the "archaebacterium" Methanosarcina barkeri (DSM 800) was determined by repetitive Edman degradation on the whole protein and peptides derived from trypsin, thermolysin, and Staphylococcus aureus protease digestion. The protein has 59 residues of which 8 are cysteines. The latter have the same spacing and distribution as found for the clostridial-type 2 x 4Fe:4S ferredoxins. Also, the sequence had evidence of internal homology which is indicative of gene duplication prior to the divergence of the archaebacteria and the eubacteria. This is the first sequence to be reported for a methanogen ferredoxin and only the fourth for a 3Fe:3S ferredoxin from any source.

Assignment of individual heme EPR signals of Desulfovibrio baculatus (strain 9974) tetraheme cytochrome c3. A redox equilibria study, Moura, I., Teixeira M., Huynh B. H., Legall J., and Moura J. J. , Eur J Biochem, Sep 15, Volume 176, Number 2, p.365-9, (1988) AbstractWebsite

An EPR redox titration was performed on the tetraheme cytochrome c3 isolated from Desulfovibrio baculatus (strain 9974), a sulfate-reducer. Using spectral differences at different poised redox states of the protein, it was possible to individualize the EPR g-values of each of the four hemes and also to determine the mid-point redox potentials of each individual heme: heme 4 (-70 mV) at gmax = 2.93, gmed = 2.26 and gmin = 1.51; heme 3 (-280 mV) at gmax = 3.41; heme 2 (-300 mV) at gmax = 3.05, gmed = 2.24 and gmin = 1.34; and heme 1 (-355 mV) at gmx = 3.18. A previously described multi-redox equilibria model used for the interpretation of NMR data of D. gigas cytochrome c3 [Santos, H., Moura, J.J.G., Moura, I., LeGall, J. & Xavier, A. V. (1984) Eur. J. Biochem. 141, 283-296] is discussed in terms of the EPR results.

Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli, Pereira, A. S., Tavares P., Krebs C., Huynh B. H., Rusnak F., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Jun 24, Volume 260, Number 1, p.209-15, (1999) AbstractWebsite

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.

Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774, Duarte, R. O., Archer M., Dias J. M., Bursakov S., Huber R., Moura I., Romao M. J., and Moura J. J. , Biochem Biophys Res Commun, Feb 24, Volume 268, Number 3, p.745-9, (2000) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romao, M. J., Knablein, J., Huber, R., and Moura, J. J. G. (1997) Prog. Biophys. Mol. Biol. 68, 121-144). The enzyme was purified to homogeneity from extracts of Desulfovibrio desulfuricans (Dd) ATCC 27774, a sulfate reducer that can use sulfate or nitrate as terminal respiratory substrates. The protein (AORDd) is described as a homodimer (monomer, circa 100 kDa), contains a Mo-MCD pterin, 2 x [2Fe-2S] clusters, and lacks a flavin group. Visible and EPR spectroscopies indicate a close similarity with the AOR purified from Desulfovibrio gigas (Dg) (Barata, B. A. S., LeGall, J., and Moura, J. J. G. (1993) Biochemistry 32, 11559-11568). Activity and substrate specificity for different aldehydes were determined. EPR studies were performed in native and reduced states of the enzyme and after treatment with ethylene glycol and dithiothreitol. The AORDd was crystallized using ammonium sulfate as precipitant and the crystals belong to the space group P6(1)22, with unit cell dimensions a = b = 156.4 and c = 177.1 A. These crystals diffract to beyond 2.5 A resolution and a full data set was measured on a rotating anode generator. The data were used to solve the structure by Patterson Search methods, using the model of AORDg.

Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin, Andersen, N. H., Harnung S. E., Trabjerg I., Moura I., Moura J. J. G., and Ulstrup J. , Dalton Transactions, Sep 7, Number 17, p.3328-3338, (2003) AbstractWebsite

The electronic-vibrational couplings of the two-centre non-heme iron protein Desulfovibrio desulfuricans desulfoferrodoxin (DFx) in three oxidation states, i.e. fully oxidised (grey), half-oxidised (pink), and fully reduced (colourless), have been investigated by variable temperature (VT) UV/VIS, MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer novel information about the electronic-vibrational couplings of the transitions. Multiphonon bandshape analysis discloses strong contributions from both local Fe-S and S-C stretching and solvent/protein modes. A number of transitions are blue- or red-shifted compared with monomeric desulforedoxin, superoxide reductase or dismutase, and cloned Desulfovibrio vulgaris DFx fragments. Conversion from grey to pink DFx is accompanied by drastic electronic-vibrational changes of both centres. The data suggest that electron transfer and optical CT-transitions of DFx are controlled by environmental reorganization in the whole region between the metal centres.

Ca2+ and the bacterial peroxidases: the cytochrome c peroxidase from Pseudomonas stutzeri, Timoteo, C. G., Tavares P., Goodhew C. F., Duarte L. C., Jumel K., Girio F. M. F., Harding S., Pettigrew G. W., and Moura I. , Journal of Biological Inorganic Chemistry, Jan, Volume 8, Number 1-2, p.29-37, (2003) AbstractWebsite

The production of cytochrome c peroxidase (CCP) from Pseudomonas (Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome C-551 (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus (Pa.) denitrificans was proposed to have two different Ca2+ binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca2+. The affinity for Ca2+ in the mixed valence enzyme is so high that Ca2+ returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca2+ for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca2+ in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca2+ does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome C-551) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca2+ binding site of low affinity.

Characterization of D. desulfuricans (ATCC 27774) [NiFe] hydrogenase EPR and redox properties of the native and the dihydrogen reacted states, Franco, R., Moura I., Legall J., Peck, H. D. Jr., Huynh B. H., and Moura J. J. , Biochim Biophys Acta, Oct 4, Volume 1144, Number 3, p.302-8, (1993) AbstractWebsite

Redox intermediates of D. desulfuricans ATCC 27774 [NiFe] hydrogenase were generated under dihydrogen. Detailed redox titrations, coupled to EPR measurements, give access to the mid-point redox potentials of the iron-sulfur centers and of the Nickel-B signal that represents the ready form of the enzyme. The interaction between the dihydrogen molecule and the nickel centre was probed by the observation of an isotopic effect on the EPR signals detected in turnover conditions, by comparison of the H2O/H2 and D2O/D2-reacted samples.

Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mossbauer methods, Franco, R., Moura J. J., Moura I., Lloyd S. G., Huynh B. H., Forbes W. S., and Ferreira G. C. , J Biol Chem, Nov 3, Volume 270, Number 44, p.26352-7, (1995) AbstractWebsite

All organisms utilize ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) to catalyze the terminal step of the heme biosynthetic pathway, which involves the insertion of ferrous ion into protoporphyrin IX. Kinetic methods and Mossbauer spectroscopy have been used in an effort to characterize the ferrous ion-binding active site of recombinant murine ferrochelatase. The kinetic studies indicate that dithiothreitol, a reducing agent commonly used in ferrochelatase activity assays, interferes with the enzymatic production of heme. Ferrochelatase specific activity values determined under strictly anaerobic conditions are much greater than those obtained for the same enzyme under aerobic conditions and in the presence of dithiothreitol. Mossbauer spectroscopy conclusively demonstrates that, under the commonly used assay conditions, dithiothreitol chelates ferrous ion and hence competes with the enzyme for binding the ferrous substrate. Mossbauer spectroscopy of ferrous ion incubated with ferrochelatase in the absence of dithiothreitol shows a somewhat broad quadrupole doublet. Spectral analysis indicates that when 0.1 mM Fe(II) is added to 1.75 mM ferrochelatase, the overwhelming majority of the added ferrous ion is bound to the protein. The spectroscopic parameters for this bound species are delta = 1.36 +/- 0.03 mm/s and delta EQ = 3.04 +/- 0.06 mm/s, distinct from the larger delta EQ of a control sample of Fe(II) in buffer only. The parameters for the bound species are consistent with an active site composed of nitrogenous/oxygenous ligands and inconsistent with the presence of sulfur ligands. This finding is in accord with the absence of conserved cysteines among the known ferrochelatase sequences. The implications these results have with regard to the mechanism of ferrochelatase activity are discussed.

Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Moessbauer and EPR studies, Moura, I., Legall J., Lino A. R., Peck H. D., Fauque G., Xavier A. V., Dervartanian D. V., Moura J. J. G., and Huynh B. H. , Journal of the American Chemical Society, 1988/02/17, Volume 110, Number 4, p.1075-1082, (1988) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B. H., Moura I., Lino A. R., Moura J. J. G., and Legall J. , Hyperfine Interactions, 1988, Volume 42, Number 1-4, p.905-908, (1988) AbstractWebsite
n/a
Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria, Huynh, B., Moura I., Lino A., Moura J., and Legall J. , Hyperfine Interactions, Volume 42, Number 1, p.905-908, (1988) AbstractWebsite

Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas . For each molecule of desulforubidin, there are two sirohemes and four [4Fe−4S] clusters. The [4Fe−4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe−4S] 2+ cluster. Such an exchange-coupled siroheme-[4Fe−4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli /1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris /2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe−4S] 2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

Continuous-wave EPR at 275GHz: application to high-spin Fe(3+) systems, Mathies, G., Blok H., Disselhorst J. A., Gast P., van der Meer H., Miedema D. M., Almeida R. M., Moura J. J., Hagen W. R., and Groenen E. J. , J Magn Reson, May, Volume 210, Number 1, p.126-32, (2011) AbstractWebsite

The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.

Conversion of [3 Fe-3 S] into [4 Fe-4 S] clusters in a Desulfovibrio gigas ferredoxin and isotopic labeling of iron—sulfur cluster subsites, Kent, T. A., Moura I., Moura J. J. G., Lipscomb J. D., Huynh B. H., Legall J., Xavier A. V., and Münck E. , Febs Letters, Volume 138, Number 1, p.55-58, (1982) AbstractWebsite
n/a
A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase, Pauleta, S. R., Cooper A., Nutley M., Errington N., Harding S., Guerlesquin F., Goodhew C. F., Moura I., Moura J. J., and Pettigrew G. W. , Biochemistry, Nov 23, Volume 43, Number 46, p.14566-76, (2004) AbstractWebsite

Pseudoazurin binds at a single site on cytochrome c peroxidase from Paracoccus pantotrophus with a K(d) of 16.4 microM at 25 degrees C, pH 6.0, in an endothermic reaction that is driven by a large entropy change. Sedimentation velocity experiments confirmed the presence of a single site, although results at higher pseudoazurin concentrations are complicated by the dimerization of the protein. Microcalorimetry, ultracentrifugation, and (1)H NMR spectroscopy studies in which cytochrome c550, pseudoazurin, and cytochrome c peroxidase were all present could be modeled using a competitive binding algorithm. Molecular docking simulation of the binding of pseudoazurin to the peroxidase in combination with the chemical shift perturbation pattern for pseudoazurin in the presence of the peroxidase revealed a group of solutions that were situated close to the electron-transferring heme with Cu-Fe distances of about 14 A. This is consistent with the results of (1)H NMR spectroscopy, which showed that pseudoazurin binds closely enough to the electron-transferring heme of the peroxidase to perturb its set of heme methyl resonances. We conclude that cytochrome c550 and pseudoazurin bind at the same site on the cytochrome c peroxidase and that the pair of electrons required to restore the enzyme to its active state after turnover are delivered one-by-one to the electron-transferring heme.