Circular Dichroism
Meneses, L. et al. Improving the activity of horseradish peroxidase in betaine-based natural deep eutectic systems. RSC Sustain. 1, 886-897 (2023).
https://doi.org/10.1039/D2SU00127F
Bragança, P. M. S. et al. Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α3DIV-L21C three-helical bundle peptide. J. Inorg. Biochem. 240, (2023).
https://doi.org/10.1016/j.jinorgbio.2022.112096
Lychko, I., Soares, C. L., Dias, A. M. G. C. & Roque, A. C. A. A scalable method to purify reflectins from inclusion bodies. Sep. Purif. Technol. 315, (2023).
https://doi.org/10.1016/j.seppur.2023.123736
Oliveira, R. N. S., de Aguiar, S. R. M. M. & Pauleta, S. R. Coordination of the N-Terminal Heme in the Non-Classical Peroxidase from Escherichia coli. Molecules 28, (2023).
https://doi.org/10.3390/molecules28124598
Dias, A. M. G. C. et al. Solvent modulation in peptide sub-microfibers obtained by solution blow spinning. Front. Chem. 10, 1-9 (2022).
https://doi.org/10.3389/fchem.2022.1054347
Antunes, J. M. A., Silva, M. A., Salgueiro, C. A. & Morgado, L. Electron Flow From the Inner Membrane Towards the Cell Exterior in Geobacter sulfurreducens: Biochemical Characterization of Cytochrome CbcL. Front. Microbiol. 13, 1-11 (2022).
https://doi.org/10.3389/fmicb.2022.898015
Teixeira, L. R., Fernandes, T. M., Silva, M. A., Morgado, L. & Salgueiro, C. A. Characterization of a Novel Cytochrome Involved in Geobacter sulfurreducens' Electron Harvesting Pathways. Chem. - A Eur. J. 28, (2022).
https://doi.org/10.1002/chem.202202333
Pina, A. S. et al. Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity. Chem. Sci. 13, 210-217 (2022).
https://doi.org/10.1039/D1SC04420F
Gajardo-Parra, N. F., Meneses, L., Duarte, A. R. C., Paiva, A. & Held, C. Assessing the Influence of Betaine-Based Natural Deep Eutectic Systems on Horseradish Peroxidase. ACS Sustain. Chem. Eng. 10, 12873-12881 (2022).
https://doi.org/10.1021/acssuschemeng.2c04045
Choroba, K. et al. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur. J. Med. Chem. 218, (2021).
https://doi.org/10.1016/j.ejmech.2021.113404
Matos, M. J. B. et al. A purification platform for antibodies and derived fragments using a de novo designed affinity adsorbent. Sep. Purif. Technol. 265, (2021).
https://doi.org/10.1016/j.seppur.2021.118476
Raposo, L. R. et al. Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line. Bioorganic Med. Chem. 30, (2021).
https://doi.org/10.1016/j.bmc.2020.115880
Jacinto, J. P. et al. Dps-DNA interaction in Marinobacter hydrocarbonoclasticus protein: effect of a single-charge alteration. Eur. Biophys. J. 50, 513-521 (2021).
https://doi.org/10.1007/s00249-021-01538-0
Almeida, A. V. et al. Structural features and stability of apo- and holo-forms of a simple iron-sulfur protein. Eur. Biophys. J. 50, 561-570 (2021).
https://doi.org/10.1007/s00249-021-01546-0
Pacheco, M. R. et al. Supramolecular protein polymers using mini-ferritin Dps as the building block. Org. Biomol. Chem. 18, 9300-9307 (2020).
https://doi.org/10.1039/D0OB01702G
Favinha, A. G., Barreiro, D. S., Martins, J. N., O'Toole, P. & Pauleta, S. R. Acrylamide-hemoglobin adduct: A spectroscopic study. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 241, (2020).
https://doi.org/10.1016/j.saa.2020.118644
Batalha, I. L., Lychko, I., Branco, R. J. F., Iranzo, O. & Roque, A. C. A. β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Org. Biomol. Chem. 17, 3996-4004 (2019).
https://doi.org/10.1039/C9OB00564A
Carvalho, H. F. et al. Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catal. Sci. Technol. 9, 6723-6736 (2019).
https://doi.org/10.1039/C9CY01364D
Cláudia S. M. Fernandes, Ana S. Pina, Arménio J. Moura Barbosa, I. P. & Filipa Duarte, Cátia A. S. Teixeira, Vítor Alves, Paula Gomes, Tiago G. Fernandes, Ana M. G. Carvalho Dias, and A. C. A. R. Affinity‐Triggered Assemblies Based on a Designed Peptide Peptide Affinity Pair. Biotechnol. J. (2019).
https://doi.org/10.1002/biot.201800559
Peixoto, D. et al. Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone. European J. Org. Chem. 2018, 545-549 (2018).
https://doi.org/10.1002/ejoc.201701500
Confocal Microscopy
Araújo, D. et al. Chitin-Glucan Complex Hydrogels: Physical-Chemical Characterization, Stability, In Vitro Drug Permeation, and Biological Assessment in Primary Cells. Polymers (Basel). 15, (2023).
https://doi.org/10.3390/polym15040791
Differential Scanning Calorimetry
Bragança, P. M. S. et al. Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α3DIV-L21C three-helical bundle peptide. J. Inorg. Biochem. 240, (2023).
https://doi.org/10.1016/j.jinorgbio.2022.112096
Correia, V. G. et al. Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Microbiol. Spectr. 9, 1-18 (2021).
https://doi.org/10.1128/Spectrum.01826-21
Nóbrega, C. S., Devreese, B. & Pauleta, S. R. YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity. Biochim. Biophys. Acta - Bioenerg. 1859, 411-422 (2018).
https://doi.org/10.1016/j.bbabio.2018.03.008
Flow Cytometry
Figueiredo-Pereira, C. et al. Carbon Monoxide Stimulates Both Mitophagy And Mitochondrial Biogenesis to Mediate Protection Against Oxidative Stress in Astrocytes. Mol. Neurobiol. 60, 851-863 (2023).
https://doi.org/10.1007/s12035-022-03108-7
Lenis-Rojas, O. A. et al. Manganese(I) tricarbonyl complexes as potential anticancer agents. J. Biol. Inorg. Chem. 27, 49-64 (2022).
https://doi.org/10.1007/s00775-021-01910-7
Lenis-Rojas, O. A. et al. In Vitro and In Vivo Biological Activity of Ruthenium 1,10-Phenanthroline-5,6-dione Arene Complexes. Int. J. Mol. Sci. 23, (2022).
https://doi.org/10.3390/ijms232113594
Nuez-Martínez, M. et al. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J. Mater. Chem. B 10, 9794-9815 (2022).
https://doi.org/10.1039/D2TB01818G
Soares, N. L. et al. Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Mol. Neurobiol. 59, 872-889 (2022).
https://doi.org/10.1007/s12035-021-02643-z
Reigosa-Chamorro, F. et al. In Vitro and in Vivo Effect of Palladacycles: Targeting A2780 Ovarian Carcinoma Cells and Modulation of Angiogenesis. Inorg. Chem. 60, 3939-3951 (2021).
https://doi.org/10.1021/acs.inorgchem.0c03763
Lenis-Rojas, O. A. et al. Half-Sandwich Ru(p-cymene) Compounds with Diphosphanes: In Vitro and in Vivo Evaluation As Potential Anticancer Metallodrugs. Inorg. Chem. 60, 2914-2930 (2021).
https://doi.org/10.1021/acs.inorgchem.0c02768
Raposo, L. R. et al. Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line. Bioorganic Med. Chem. 30, (2021).
https://doi.org/10.1016/j.bmc.2020.115880
Rivas-García, L. et al. Rosa x hybrida extracts with dual actions: Antiproliferative effects against tumour cells and inhibitor of Alzheimer disease. Food Chem. Toxicol. 149, (2021).
https://doi.org/10.1016/j.fct.2021.112018
Choroba, K. et al. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur. J. Med. Chem. 218, (2021).
https://doi.org/10.1016/j.ejmech.2021.113404
Palion-gazda, J. et al. Vanadium(IV) Complexes with Methyl-Substituted 8-Hydroxyquinolines: Catalytic Potential in the Oxidation of Hydrocarbons and Alcohols with Peroxides and Biological Activity. Molecules (2021).
https://doi.org/10.3390/molecules26216364
Rodrigo, A. P. et al. Specific antiproliferative properties of proteinaceous toxin secretions from the marine annelid eulalia sp. Onto ovarian cancer cells. Mar. Drugs 19, (2021).
https://doi.org/10.3390/md19010031
Lenis‐rojas, O. A. et al. Evaluation of the in vitro and in vivo efficacy of ruthenium polypyridyl compounds against breast cancer. Int. J. Mol. Sci. 22, (2021).
https://doi.org/10.3390/ijms22168916
Kordestani, N. et al. Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalt. Trans. 50, 3990-4007 (2021).
https://doi.org/10.1039/D0DT03962D
Sequeira, D. et al. Cu(i) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action. Dalt. Trans. 50, 1845-1865 (2021).
https://doi.org/10.1039/D0DT03566A
Kordestani, N. et al. Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes. ACS Comb. Sci. 22, 89-99 (2020).
https://doi.org/10.1021/acscombsci.9b00202
Loureiro, L. R. et al. Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. J. Exp. Clin. Cancer Res. 39, 1-13 (2020).
https://doi.org/10.1186/s13046-020-01572-4
Das, K. et al. Zn(II) and Co(II) derivatives anchored with scorpionate precursor: Antiproliferative evaluation in human cancer cell lines. J. Inorg. Biochem. 202, 110881 (2020).
https://doi.org/10.1016/j.jinorgbio.2019.110881
Silva, Z. et al. MHC class I stability is modulated by cell surface sialylation in human dendritic cells. Pharmaceutics 12, 1-21 (2020).
https://doi.org/10.3390/pharmaceutics12030249
Deschepper, F. M. et al. L1cam as an e-selectin ligand in colon cancer. Int. J. Mol. Sci. 21, 1-23 (2020).
https://doi.org/10.3390/ijms21218286
Machado, J. F. et al. New copper(i) complexes selective for prostate cancer cells. Dalt. Trans. 49, 12273-12286 (2020).
https://doi.org/10.1039/D0DT02157A
Choroba, K. et al. In vitro antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline-based ligands-the substituent effect. Dalt. Trans. 49, 6596-6606 (2020).
https://doi.org/10.1039/D0DT01017K
Choroba, K. et al. Platinum(II) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells. Dalt. Trans. 48, 13081-13093 (2019).
https://doi.org/10.1039/C9DT02894C
Choroba, K. et al. Copper(ii) complexes with 2,2′:6′,2′′-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalt. Trans. 48, 12656-12673 (2019).
https://doi.org/10.1039/C9DT01922G
Sutradhar, M. et al. Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers. J. Inorg. Biochem. 200, 110811 (2019).
https://doi.org/10.1016/j.jinorgbio.2019.110811
Almeida, J. et al. Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate. J. Inorg. Biochem. 199, 110789 (2019).
https://doi.org/10.1016/j.jinorgbio.2019.110789
Ferreira, I. G. et al. Carcinoembryonic antigen is a sialyl Lewis x/a carrier and an E‑selectin ligand in non‑small cell lung cancer. Int. J. Oncol. 55, 1033-1048 (2019).
https://doi.org/10.3892/ijo.2019.4886
Pedrosa, P. et al. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci. 20, 1-17 (2019).
https://doi.org/10.3390/ijms20215510
Svahn, N. et al. The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes. Chem. - A Eur. J. 24, 14571 (2018).
https://doi.org/10.1002/chem.201804176
Das, K. et al. EPR and electrochemical interpretation of bispyrazolylacetate anchored Ni(ii) and Mn(ii) complexes: Cytotoxicity and anti-proliferative activity towards human cancer cell lines. New J. Chem. 42, 9126-9139 (2018).
https://doi.org/10.1039/C8NJ01033A
Maroń, A. et al. Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2′:6′,2′′-terpyridine ligands. Dalt. Trans. 47, 6444-6463 (2018).
https://doi.org/10.1039/C8DT00558C
Bathula, C., Roma-Rodrigues, C., Chauhan, J., Fernandes, A. R. & Sen, S. Synthesis of tetrahydro-1: H -indolo[2,3- b] pyrrolo[3,2- c] quinolones via intramolecular oxidative ring rearrangement of tetrahydro-β-carbolines and their biological evaluation. New J. Chem. 42, 6538-6547 (2018).
https://doi.org/10.1039/C7NJ04616B
Lenis-Rojas, O. A. et al. RuII(p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo. Inorg. Chem. 57, 13150-13166 (2018).
https://doi.org/10.1021/acs.inorgchem.8b01270
Loureiro, L. R. et al. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2-6 sialic acids. Sci. Rep. 8, 1-16 (2018).
https://doi.org/10.1038/s41598-018-30421-w
Loureiro, L. R. et al. Development of a novel target module redirecting UniCAR T cells to Sialyl Tn-expressing tumor cells. Blood Cancer J. 8, 4-9 (2018).
https://doi.org/10.1038/s41408-018-0113-4
Severino, P. F. et al. Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1. BMC Cancer 18, 1-9 (2018).
https://doi.org/10.1186/s12885-018-4107-1
Marques, G. S., Silva, Z. & Videira, P. A. Antitumor Efficacy of Human Monocyte-Derived Dendritic Cells: Comparing Effects of two Monocyte Isolation Methods. Biol. Proced. Online 20, 1-9 (2018).
https://doi.org/10.1186/s12575-018-0069-6
Carrascal, M. A. et al. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol. Oncol. 12, 579-593 (2018).
https://doi.org/10.1002/1878-0261.12163
Paula A. Videira, Mariana Silva, K. C. M. and R. S. Ligation of the CD44 Glycoform HCELL on Culture-Expanded Human Monocyte-derived Dendritic Cells Programs Transendothelial Migration. J Immunol. 201, 1030-1043 (2018).
https://doi.org/10.4049/jimmunol.1800188
MicroScale Thermophoresis
Trovão, F. et al. The structure of a Bacteroides thetaiotaomicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome. J. Struct. Biol. X 7, (2023).
https://doi.org/10.1016/j.yjsbx.2022.100084
Brás, N. F. et al. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg. Chem. 108, (2021).
https://doi.org/10.1016/j.bioorg.2020.104552
López-Méndez, B. et al. Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study. Eur. Biophys. J. 50, 411-427 (2021).
https://doi.org/10.1007/s00249-021-01529-1
Correia, V. G. et al. Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Microbiol. Spectr. 9, 1-18 (2021).
https://doi.org/10.1128/Spectrum.01826-21
Fernandes, C. S. M. et al. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules 21, 3081-3091 (2020).
https://doi.org/10.1021/acs.biomac.0c00473
Batalha, I. L., Lychko, I., Branco, R. J. F., Iranzo, O. & Roque, A. C. A. β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Org. Biomol. Chem. 17, 3996-4004 (2019).
https://doi.org/10.1039/C9OB00564A
Cordeiro, M. et al. Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor. ACS Chem. Biol. 13, 1235-1242 (2018).
https://doi.org/10.1021/acschembio.8b00029
Multi Parametric Surface Plasmon Resonance
Oliveira, A., Ramou, E., Teixeira, G., Palma, S. & Roque, A. Incorporation of VOC-Selective Peptides in Gas Sensing Materials. Biodevices 1, 25-34 (2022).
https://doi.org/10.5220/0010797200003123