Publications

Export 176 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
1
Najmudin, S, Pauleta SR, Moura I, Romao MJ.  2010.  The 1.4 angstrom resolution structure of Paracoccus pantotrophus pseudoazurin. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 66:627-635. AbstractWebsite
n/a
2
Varela, PF, Romero A, Sanz L, Romao MJ, Topfer-Petersen E, Calvete JJ.  1997.  The 2.4 angstrom resolution crystal structure of boar seminal plasma PSP-I/PSP-II: a zona pellucida-binding glycoprotein heterodimer of the spermadhesin family built by a CUB domain architecture. Journal of Molecular Biology. 274:635-649., Number 4 AbstractWebsite
n/a
A
Liu, Y, Childs RA, Matrosovich T, Wharton S, Palma AS, Chai W, Daniels R, Gregory V, Uhlendorff J, Kiso M, Klenk H-D, Hay A, Feizi T, Matrosovich M.  2010.  Altered Receptor Specificity and Cell Tropism of D222G Hemagglutinin Mutants Isolated from Fatal Cases of Pandemic A(H1N1) 2009 Influenza Virus. Journal of Virology. 84:12069-12074., Number 22 AbstractWebsite
n/a
Glatigny, A, Hof P, Romao MJ, Huber R, Scazzocchio C.  1998.  Altered specificity mutations define residues essential for substrate positioning in xanthine dehydrogenase. Journal of Molecular Biology. 278:431-438., Number 2 AbstractWebsite
n/a
Moura, JJG, Goodfellow BJ, Romao MJ, Rusnak F, Moura I.  1996.  Analysis, design and engineering of simple iron-sulfur proteins: Tales from rubredoxin and desulforedoxin. Comments on Inorganic Chemistry. 19:47-+., Number 1 AbstractWebsite
n/a
Correia, HD, Marangon J, Brondino CD, Moura JJG, Romao MJ, Gonzalez PJ, Santos-Silva T.  2015.  Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction. Journal of Biological Inorganic Chemistry. 20:219-229., Number 2 AbstractWebsite

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using C-13-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe(425) and Tyr(535) are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

Bule, P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, Gilbert HJ, Najmudin S, Bayer EA, Fontes CMGA.  2017.  Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes, 2017. Scientific Reports. 7:759. AbstractWebsite

Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.

B
Feizi, T, Liu Y, Palma AS.  2011.  Bacterial, Fungal, and Algal Lectins: Combatants in Tug of War against HIV. Structure. 19:1035-1037., Number 8 AbstractWebsite
n/a
Otrelo-Cardoso, AR, Schwuchow V, Rodrigues D, Cabrita EJ, Leimkuehler S, Romao MJ, Santos-Silva T.  2014.  Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes. Plos One. 9, Number 1 AbstractWebsite
n/a
Duarte, RO, Archer M, Dias JM, Bursakov S, Huber R, Moura I, Romao MJ, Moura JJG.  2000.  Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774. Biochemical and Biophysical Research Communications. 268:745-749., Number 3 AbstractWebsite
n/a
Chaves, S, Gil M, Canario S, Jelic R, Romao MJ, Trincao J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos AM.  2008.  Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Transactions. :1773-1782., Number 13 AbstractWebsite
n/a
C
Graham, LM, Gupta V, Schafer G, Reid DM, Kimberg M, Dennehy KM, Hornsell WG, Guler R, Campanero-Rhodes MA, Palma AS, Feizi T, Kim SK, Sobieszczuk P, Willment JA, Brown GD.  2012.  The C-type Lectin Receptor CLECSF8 (CLEC4D) Is Expressed by Myeloid Cells and Triggers Cellular Activation through Syk Kinase. Journal of Biological Chemistry. 287:25964-25974., Number 31 AbstractWebsite
n/a
Liu, Y, Palma AS, Feizi T.  2009.  Carbohydrate microarrays: key developments in glycobiology. Biological Chemistry. 390:647-656., Number 7 AbstractWebsite
n/a
Gao, C, Liu Y, Zhang H, Zhang Y, Fukuda MN, Palma AS, Kozak RP, Childs RA, Nonaka M, Li Z, Siegel DL, Hanfland P, Peehl DM, Chai W, Greene MI, Feizi T.  2014.  Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J Biol Chem. 289:16462-77., Number 23 AbstractWebsite

Monoclonal antibody F77 was previously raised against human prostate cancer cells and has been shown to recognize a carbohydrate antigen, but the carbohydrate sequence of the antigen was elusive. Here, we make multifaceted approaches to characterize F77 antigen, including binding analyses with the glycolipid extract of the prostate cancer cell line PC3, microarrays with sequence-defined glycan probes, and designer arrays from the O-glycome of an antigen-positive mucin, in conjunction with mass spectrometry. Our results reveal F77 antigen to be expressed on blood group H on a 6-linked branch of a poly-N-acetyllactosamine backbone. We show that mAb F77 can also bind to blood group A and B analogs but with lower intensities. We propose that the close association of F77 antigen with prostate cancers is a consequence of increased blood group H expression together with up-regulated branching enzymes. This is in contrast to other epithelial cancers that have up-regulated branching enzymes but diminished expression of H antigen. With knowledge of the structure and prevalence of F77 antigen in prostate cancer, the way is open to explore rationally its application as a biomarker to detect F77-positive circulating prostate cancer-derived glycoproteins and tumor cells.

Carvalho, AL, Dias FMV, Prates JAM, Nagy T, Gilbert HJ, Davies GJ, Ferreira LMA, Romao MJ, Fontes C.  2003.  Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America. 100:13809-13814., Number 24 AbstractWebsite
n/a
Crusat, M, Liu J, Palma AS, Childs RA, Liu Y, Wharton SA, Lin YP, Coombs PJ, Martin SR, Matrosovich M, Chen Z, Stevens DJ, Hien VM, Thanh TT, le Nhu NT, Nguyet LA, do Ha Q, van Doorn HR, Hien TT, Conradt HS, Kiso M, Gamblin SJ, Chai W, Skehel JJ, Hay AJ, Farrar J, de Jong MD, Feizi T.  2013.  Changes in the hemagglutinin of H5N1 viruses during human infection–influence on receptor binding. Virology. 447:326-37., Number 1-2 AbstractWebsite

As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process.

Mahro, M, Coelho C, Trincao J, Rodrigues D, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Romao MJ, Leimkuehler S.  2011.  Characterization and Crystallization of Mouse Aldehyde Oxidase 3: From Mouse Liver to Escherichia coli Heterologous Protein Expression. Drug Metabolism and Disposition. 39:1939-1945., Number 10 AbstractWebsite
n/a
Seixas, JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Goncalves AML, Penacho N, Marques AR, Coelho AC, Reis PM, Romao MJ, Romao CC.  2013.  Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalton Transactions. 42:5985-5998., Number 17 AbstractWebsite
n/a
Kladova, AV, Gavel YO, Mukhopaadhyay A, Boer DR, Teixeira S, Shnyrov VL, Moura I, Moura JJG, Romao MJ, Trincao J, Bursakov SA.  2009.  Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:926-929. AbstractWebsite
n/a
Suits, MD, Pluvinage B, Law A, Liu Y, Palma AS, Chai W, Feizi T, Boraston AB.  2014.  Conformational analysis of the Streptococcus pneumoniae hyaluronate lyase and characterization of its hyaluronan-specific carbohydrate-binding module. J Biol Chem. 289:27264-77., Number 39 AbstractWebsite

For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl.

Seixas, JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Goncalves AML, Romao MJ, Bernardes GJL, Santos-Silva T, Romao CC.  2015.  A contribution to the rational design of Ru(CO)(3)Cl2L complexes for in vivo delivery of CO. Dalton Transactions. 44:5058-5075., Number 11 AbstractWebsite

A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)(3)Cl2L] (L = DMSO (3), L-H3CSO(CH2)(2)CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)(2)CH-(NH2)CO2H (6b); 3-NC5H4(CH2)(2)SO3.Na (7); 4-NC5H4(CH2)(2)SO3Na (8); PTA (9); DAPTA (10); H3CS-(CH2)(2)CH(OH) CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWV) shows the addition of Ru-II(CO)(H2O)(4) at the His15 binding site. Soakings with 7 (4UWU) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)(3)](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO- on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.

Santos-Silva, T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romao CC, Romao MJ.  2011.  CORM-3 Reactivity toward Proteins: The Crystal Structure of a Ru(II) Dicarbonyl-Lysozyme Complex. Journal of the American Chemical Society. 133:1192-1195., Number 5 AbstractWebsite
n/a
Thapper, A, Boer DR, Brondino CD, Moura JJG, Romao MJ.  2007.  Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase. Journal of Biological Inorganic Chemistry. 12:353-366., Number 3 AbstractWebsite
n/a
Bursakov, SA, Brondino C, Dias JM, Carneiro C, Caldeira J, Duarte RO, Romao MJ, Moura I, Moura JJG.  1999.  Cross immunological reactions and spectroscopy study within nitrate reductase and other mononuclear Mo containing enzymes of the sulfate reducing bacteria. Journal of Inorganic Biochemistry. 74:86-86., Number 1-4 AbstractWebsite
n/a
Romao, MJ, Hubert R.  1997.  Crystal structure and mechanism of action of the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas. Biochemical Society Transactions. 25:755-757., Number 3 AbstractWebsite
n/a