Publications

Export 207 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Cerqueira, NMFSA, Coelho C, Bras NF, Fernandes PA, Garattini E, Terao M, Romao MJ, Ramos MJ.  2015.  Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry. 20:209-217., Number 2 AbstractWebsite

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

Cerqueira, NMFSA, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I, Moura JJG.  2009.  The Effect of the Sixth Sulfur Ligand in the Catalytic Mechanism of Periplasmic Nitrate Reductase. Journal of Computational Chemistry. 30:2466-2484., Number 15 AbstractWebsite
n/a
Carvalho, AL, Dias JM, Sanz L, Romero A, Calvete JJ, Romao MJ.  2001.  Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma. Acta Crystallographica Section D-Biological Crystallography. 57:1180-1183. AbstractWebsite
n/a
Carvalho, AL, Dias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LMA, Romao MJ, Fontes CMGA, Gilbert HJ.  2007.  Evidence for a dual binding mode of dockerin modules to cohesins. Proceedings of the National Academy of Sciences of the United States of America. 104:3089-3094., Number 9 AbstractWebsite
n/a
Carvalho, AL, Goyal A, Prates JAM, Bolam DN, Gilbert HJ, Pires VMR, Ferreira LMA, Planas A, Romao MJ, Fontes C.  2004.  The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. Journal of Biological Chemistry. 279:34785-34793., Number 33 AbstractWebsite
n/a
Carvalho, AL, Pires VMR, Gloster TM, Turkenburg JP, Prates JAM, Ferreira LMA, Romao MJ, Davies GJ, Fontes C, Gilbert HJ.  2005.  Insights into the structural determinants of cohesin dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. Journal of Molecular Biology. 349:909-915., Number 5 AbstractWebsite
n/a
Carvalho, AL, Dias FMV, Prates JAM, Nagy T, Gilbert HJ, Davies GJ, Ferreira LMA, Romao MJ, Fontes C.  2003.  Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America. 100:13809-13814., Number 24 AbstractWebsite
n/a
Carvalho, AL, Santos-Silva T, Romão MJ, Eurico J, Marcelo F.  2018.  {CHAPTER 2 Structural Elucidation of Macromolecules}, sep. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. :30–91.: BENTHAM SCIENCE PUBLISHERS AbstractWebsite
n/a
Carvalho, AL, Sanz L, Barettino D, Romero A, Calvete JJ, Romao MJ.  2002.  Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: A homologue of human PSA. Journal of Molecular Biology. 322:325-337., Number 2 AbstractWebsite
n/a
B
Bursakov, SA, Brondino C, Dias JM, Carneiro C, Caldeira J, Duarte RO, Romao MJ, Moura I, Moura JJG.  1999.  Cross immunological reactions and spectroscopy study within nitrate reductase and other mononuclear Mo containing enzymes of the sulfate reducing bacteria. Journal of Inorganic Biochemistry. 74:86-86., Number 1-4 AbstractWebsite
n/a
Bule, P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, Gilbert HJ, Najmudin S, Bayer EA, Fontes CMGA.  2017.  Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes, 2017. Scientific Reports. 7:759. AbstractWebsite

Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.

Bule, P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA.  2018.  Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction, 2018. Scientific Reports. 8(1):6987. AbstractWebsite

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.

Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2007.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria (vol 39, pg 793, 2006). Accounts of Chemical Research. 40:231-231., Number 3 AbstractWebsite
n/a
Brondino, CD, Romao MJ, Moura I, Moura JJG.  2006.  Molybdenum and tungsten enzymes: the xanthine oxidase family. Current Opinion in Chemical Biology. 10:109-114., Number 2 AbstractWebsite
n/a
Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2006.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria. Accounts of Chemical Research. 39:788-796., Number 10 AbstractWebsite
n/a
Brás, JLA, Pinheiro BA, Cameron K, Cuskin F, Viegas A, Najmudin S, Bule P, Pires VMR, Romão MJ, Bayer EA, Spencer HL, Smith S, Gilbert HJ, Alves VD, Carvalho AL, Fontes CMGA.  2016.  Diverse specificity of cellulosome attachment to the bacterial cell surface, dec. Scientific Reports. 6:38292.: The Author(s) AbstractWebsite

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

Bras, JLA, Correia MAS, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.  2011.  Purification, crystallization and preliminary X-ray characterization of the pentamodular arabinoxylanase CtXyl5A from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 67:833-836. AbstractWebsite
n/a
Bras, JLA, Alves VD, Carvalho AL, Najmudin S, Prates JAM, Ferreira LMA, Bolam DN, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode. Journal of Biological Chemistry. 287:44394-44405., Number 53 AbstractWebsite
n/a
Brás, NF, Neves RPP, Lopes FAA, Correia MAS, Palma AS, Sousa SF, Ramos MJ.  2021.  Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase, 2021. 108:104552. AbstractWebsite

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4′-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.

Bras, JLA, Cartmell A, Carvalho ALM, Verze G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CMGA, Gilbert HJ.  2011.  Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America. 108:5237-5242., Number 13 AbstractWebsite
n/a
Bras, JLA, Carvalho AL, Viegas A, Najmudin S, Alves VD, Prates JAM, Ferreira LMA, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  ESCHERICHIA COLI EXPRESSION, PURIFICATION, CRYSTALLIZATION, AND STRUCTURE DETERMINATION OF BACTERIAL COHESIN-DOCKERIN COMPLEXES. Cellulases. 510(Gilbert, H. J., Ed.).:395-415. Abstract
n/a
Branco, PS, Peixoto D, Figueiredo M, Malta G, Roma-Rodrigues C, Batista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM.  2018.  Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero arylidene-9(10H)-anthrone. European Journal of Organic Chemistry. :n/a–n/a. AbstractWebsite

A new and never yet reported hetero arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally attributed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity (Kb = 2.0(± 0.20) x 105 M-1) which is 10x higher than that described for doxorubicin (Kb = 3.2 (±0.23) × 104 M-1). Furthermore, compound 4 quenches the fluorescence emission of GelRed-CT-DNA system with a quenching constant (KSV) of 3.3(±0.3) x 103 M-1 calculated by the Stern-Volmer equation.

Bonifacio, C, Cunha CA, Muller A, Timoteo CG, Dias JM, Moura I, Romao MJ.  2003.  Crystallization and preliminary X-ray diffraction analysis of the di-haem cytochrome c peroxidase from Pseudomonas stutzeri. Acta Crystallographica Section D-Biological Crystallography. 59:345-347. AbstractWebsite
n/a
Boer, DR, Muller A, Fetzner S, Lowe DJ, Romao MJ.  2005.  On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 61:137-140. AbstractWebsite
n/a
Boer, DR, Thapper A, Brondino CD, Romao MJ, Moura JJG.  2004.  X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibrio gigas aldehyde dehydrogenase: A member of the xanthine oxidase family. Journal of the American Chemical Society. 126:8614-8615., Number 28 AbstractWebsite
n/a