Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure

Citation:
Barroca-Ferreira, J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA.  2021.  Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. International Journal of Molecular Sciences. 22, Number 18

Abstract:

Background: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. Methods: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. Results: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of  55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein’s structural stability. Conclusions: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.

Notes:

n/a

Related External Link