Publications

Export 117 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
N
Santos, MFA, Seixas JD, Coelho AC, Mukhopadhyay A, Reis PM, Romao MJ, Romao CC, Santos-Silva T.  2012.  New insights into the chemistry of fac- Ru(CO)(3) (2+) fragments in biologically relevant conditions: The CO releasing activity of Ru(CO)(3)Cl-2(1,3-thiazole) , and the X-ray crystal structure of its adduct with lysozyme. Journal of Inorganic Biochemistry. 117:285-291. AbstractWebsite
n/a
Pessoa, JC, Gonçalves G, Roy S, Correia I, Mehtab S, Santos MFA, Santos-Silva T.  2014.  New insights on vanadium binding to human serum transferrin. Inorganica Chimica Acta. 420:60-68. AbstractWebsite

Abstract The knowledge on the binding of vanadium ions and complexes to serum proteins and how vanadium might be transported in blood and up-taken by cells has received much attention during the last decade, particularly as far as the transport of VIVO2+ is concerned. In this work we revise and discuss some relevant aspects of previous research, namely the two main types of binding proposed for transport of VIVO(carrier)2 complexes. New results, obtained by circular dichroism (CD), \{EPR\} and gel electrophoresis, regarding the binding of vanadium to hTF in the oxidation states +5 and +3 are also presented. Namely, evidences for the binding of VV-species to diferric-transferrin, designated by (FeIII)2hTF, as well as to (AlIII)2hTF, are presented and discussed, the possibility of up-take of vanadate by cells through (FeIII)2hTF endocytosis being suggested. It is also confirmed that \{VIII\} binds strongly to hTF, forming di-vanadium(III)-transferrin, designated by (VIII)2hTF, and gel electrophoresis experiments indicate that (VIII)2hTF corresponds to a ‘closed conformation’ similar to (FeIII)2hTF.

O
Boer, DR, Muller A, Fetzner S, Lowe DJ, Romao MJ.  2005.  On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 61:137-140. AbstractWebsite
n/a
P
Najmudin, S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NMFSA, Romao CC, Moura I, Moura JJG, Brondino CD, Romao MJ.  2008.  Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. Journal of Biological Inorganic Chemistry. 13:737-753., Number 5 AbstractWebsite
n/a
Romao, MJ, Carvalho AL, Dias JM, Teixeira S, Bourenkov G, Bartunik H, Huber R, Maia L, Mira L.  1999.  Preliminary crystallographic studies of xanthine oxidase purified from rat liver. Journal of Inorganic Biochemistry. 74:281-281., Number 1-4 AbstractWebsite
n/a
Freire, F, Romao MJ, Macedo AL, Aveiro SS, Goodfellow BJ, Carvalho AL.  2009.  Preliminary structural characterization of human SOUL, a haem-binding protein. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:723-726. AbstractWebsite
n/a
Polino, M, Rho HS, Pina MP, Mallada R, Carvalho AL, Romão MJ, Coelhoso I, Gardeniers JGE, Crespo JG, Portugal CAM.  2021.  Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes. 11, Number 8 AbstractWebsite

Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.

Gavel, OY, Kladova AV, Bursakov SA, Dias JM, Texeira S, Shnyrov VL, Moura JJG, Moura I, Romao MJ, Trincao J.  2008.  Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 64:593-595. AbstractWebsite
n/a
R
Honzicek, J, Mukhopadhyay A, Santos-Silva T, Romao MJ, Romao CC.  2009.  Ring-Functionalized Molybdenocene Complexes. Organometallics. 28:2871-2879., Number 9 AbstractWebsite
n/a
Romao, MJ.  2006.  The role of molybdenum in biology. Metal Ions in Biology and Medicine, Vol 9. 9(Alpoim, M.C., Morais, P.V., Eds.).:507-510. Abstract
n/a
S
Gomes, AS, Ramos H, Gomes S, Loureiro JB, Soares J, Barcherini V, Monti P, Fronza G, Oliveira C, Domingues L, Bastos M, Dourado DFAR, Carvalho AL, Romão MJ, Pinheiro B, Marcelo F, Carvalho A, Santos MMM, Saraiva L.  2020.  SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations, 2020. 1864(1):129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Goodfellow, BJ, Tavares P, Romao MJ, Czaja C, Rusnak F, Legall J, Moura I, Moura JJG.  1996.  The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative. Journal of Biological Inorganic Chemistry. 1:341-354., Number 4 AbstractWebsite
n/a
Viegas, A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CMGA, Romao MJ, Macedo AL, Cabrita EJ.  2013.  Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochemical Journal. 451:289-300. AbstractWebsite
n/a
Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

Oliveira, AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC.  2022.  Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis, 2022. ACS Chemical BiologyACS Chemical Biology. 17(7):1901-1909.: American Chemical Society AbstractWebsite

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.

Freire, F, Macedo AL, Aveiro SS, Romao MJ, Carvalho AL, Goodfellow BJ.  2009.  Structural and dynamic characterization of hSOUL, a heme-binding protein. Febs Journal. 276:139-140. AbstractWebsite
n/a
Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2006.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria. Accounts of Chemical Research. 39:788-796., Number 10 AbstractWebsite
n/a
Brondino, CD, Rivas MG, Romao MJ, Moura JJG, Moura I.  2007.  Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria (vol 39, pg 793, 2006). Accounts of Chemical Research. 40:231-231., Number 3 AbstractWebsite
n/a
Dias, JM, Alves T, Bonifacio C, Pereira AS, Trincao J, Bourgeois D, Moura I, Romao MJ.  2004.  Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617. Structure. 12:961-973., Number 6 AbstractWebsite
n/a
Lima, CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F.  2021.  Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins, 2021. Chemistry – A European JournalChemistry – A European Journal. n/a(n/a): John Wiley & Sons, Ltd AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

Archer, M, Carvalho AL, Teixeira S, Moura I, Moura JJG, Rusnak F, Romao MJ.  1999.  Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Science. 8:1536-1545., Number 7 AbstractWebsite
n/a
Aveiro, SS, Freire F, Clayton J, Cameloc M, Carvalho AL, Ferreira GC, Romao MJ, Macedo AL, Goodfellow BJ.  2012.  Structural studies of the p22HBP/SOUL family of heme-binding proteins. Febs Journal. 279:458-458. AbstractWebsite
n/a
Goncalves, LML, Cunha C, Almeida G, Macieira S, Costa C, Lampreia J, Romao MJ, Moura JJG, Moura I.  2001.  Structural studies on Desulfovibrio desulfuricans ATCC 27774 multiheme nitrite reductase - characterization of the subunits. Journal of Inorganic Biochemistry. 86:316-316., Number 1 AbstractWebsite
n/a
Romao, MJ, Knablein J, Huber R, Moura JJG.  1997.  Structure and function of molybdopterin containing enzymes. Progress in Biophysics & Molecular Biology. 68:121-144., Number 2-3 AbstractWebsite
n/a
Rebelo, JM, Dias JM, Huber R, Moura JJG, Romao MJ.  2001.  Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 angstrom. Journal of Biological Inorganic Chemistry. 6:791-800., Number 8 AbstractWebsite
n/a