Publications

Export 81 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Oliveira, AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA.  2024.  An allosteric redox switch involved in oxygen protection in a CO2 reductase, 2024. 20(1):111-119. AbstractWebsite

Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.

Mota, C, Webster M, Saidi M, Kapp U, Zubieta C, Giachin G, Manso JA, de Sanctis D.  2024.  Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. bioRxiv. : Cold Spring Harbor Laboratory AbstractWebsite

The accumulation of manganese ions is crucial for scavenging reactive oxygen species (ROS) and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains: a DNA binding domain, a dimerization domain, and an ancillary domain, both the metal ion activation mechanism and the DNA recognition mechanism remain elusive. In this study, we present biophysical analyses and the structure of the dimerization and DNA binding domains of DR2539 in its holo form and in complex with the 21 bp pseudo-palindromic repeat of the dr1709 promotor region. These findings shed light into the activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix H3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small angle X-ray scattering experiments and supported by AlphaFold modelling provides a model illustrating the conformational changes induced upon metal binding.Competing Interest StatementThe authors have declared no competing interest.

Vilela-Alves, G, Manuel RR, Viegas A, Carpentier P, Biaso F, Guigliarelli B, Pereira IAC, Romão MJ, Mota C.  2024.  Substrate-dependent oxidative inactivation of a W-dependent formate dehydrogenase involving selenocysteine displacement. bioRxiv. : Cold Spring Harbor Laboratory AbstractWebsite

Metal-dependent formate dehydrogenases are very promising targets for enzyme optimization and design of bio-inspired catalysts for CO2 reduction, towards novel strategies for climate change mitigation. For effective application of these enzymes, the catalytic mechanism must be fully understood, and the molecular determinants clarified. Despite numerous studies, several doubts persist, namely regarding the role played by the possible dissociation of the SeCys ligand from the Mo/W active site. Additionally, the O2 sensitivity of these enzymes must also be understood as it poses an important obstacle for biotechnological applications. Here we present a combined biochemical, spectroscopic, and structural characterization of Desulfovibrio vulgaris FdhAB (DvFdhAB) when exposed to oxygen in the presence of a substrate (formate or CO2). This study reveals that O2 inactivation is promoted by the presence of either substrate and involves forming a new species in the active site, captured in the crystal structures, where the SeCys ligand is displaced from tungsten coordination and replaced by a dioxygen or peroxide molecule. This new form was reproducibly obtained and supports the conclusion that, although W-DvFdhAB can catalyze the oxidation of formate in the presence of oxygen for some minutes, it gets irreversibly inactivated after prolonged O2 exposure in the presence of either substrate. These results reveal that oxidative inactivation does not require reduction of the metal, as widely assumed, as it can also occur in the oxidized state in the presence of CO2.Competing Interest StatementThe authors have declared no competing interest.AORAldehyde Oxido-reductaseDTTDithiothreitolDvDesulfovibrio vulgarisEPRElectron Paramagnetic ResonanceFdhFormate dehydrogenaseHPHigh PressureMGDMolybdopterin Guanine DinucleotidesNDNew dropROSReactive Oxygen SpeciesSODSuperoxide dismutaseTSAThermal Shift Assay

2023
Silva, JM, Cerofolini L, Carvalho AL, Ravera E, Fragai M, Parigi G, Macedo AL, Geraldes CFGC, Luchinat C.  2023.  Elucidating the concentration-dependent effects of thiocyanate binding to carbonic anhydrase, 2023. 244:112222. AbstractWebsite

Many proteins naturally carry metal centers, with a large share of them being in the active sites of several enzymes. Paramagnetic effects are a powerful source of structural information and, therefore, if the native metal is paramagnetic, or it can be functionally substituted with a paramagnetic one, paramagnetic effects can be used to study the metal sites, as well as the overall structure of the protein. One notable example is cobalt(II) substitution for zinc(II) in carbonic anhydrase. In this manuscript we investigate the effects of sodium thiocyanate on the chemical environment of the metal ion of the human carbonic anhydrase II. The electron paramagnetic resonance (EPR) titration of the cobalt(II) protein with thiocyanate shows that the EPR spectrum changes from A-type to C-type on passing from 1:1 to 1:1000-fold ligand excess. This indicates the occurrence of a change in the electronic structure, which may reflect a sizable change in the metal coordination environment in turn caused by a modification of the frozen solvent glass. However, paramagnetic nuclear magnetic resonance (NMR) data indicate that the metal coordination cage remains unperturbed even in 1:1000-fold ligand excess. This result proves that the C-type EPR spectrum observed at large ligand concentration should be ascribed to the low temperature at which EPR measurements are performed, which impacts on the structure of the protein when it is destabilized by a high concentration of a chaotropic agent.

Gomes, D, Correia MAS, Romão MJ, Passarinha LA, Sousa A.  2023.  Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts, 2023. 315:123647. AbstractWebsite

Human papillomavirus (HPV) is a sexually transmissible virus responsible for 5% of global human cancers and associated with 99% of cervical cancer cases. The oncogenic potential of high-risk HPVs is mainly related to the E6 and E7 oncoproteins, which are responsible, at least in part, for inactivating the p53 and pRb tumor suppressor proteins. Due to the critical role of the E6 protein in malignant tumorigenesis, it is widely recognized as a therapeutic target for anti-HPV drug development. Nevertheless, it is required to obtain large amounts of protein with high purity to perform biointeraction studies with the potential inhibitor drugs. In this work, recombinant dual-tagged E6 protein (His6-MBP-E6) was expressed from Escherichia coli (E. coli) cultures and successfully extracted by sonication/ice cycles. Affinity chromatography using MBPtrap columns allowed 85 ± 5% protein recovery with the elimination of major host heterologous proteins in a single fraction. Subsequently, a polishing step was studied by applying anionic exchange (QSepharose), size exclusion (Superdex), or immobilized-metal affinity chromatography (HisTrap). The combination of affinity chromatography with size exclusion or two affinity chromatography techniques allowed us to obtain 82 ± 2% and 94 ± 3%, of highly pure His6-MBP-E6, respectively. Also, the secondary structure of His6-MBP-E6 is preserved in both purification strategies, as appraised by circular dichroism and western-blot studies. Thermal shift assay confirmed the CD results and suggested potential additives for protein stabilization. Altogether, the reproducible strategies established for the purification of His6-MBP-E6 protein could be successfully applied to later perform biointeraction studies and structural characterization of protein–ligand complexes.

2022
Santos, MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Pessoa JC.  2022.  Binding of VIVO2+, VIVOL, VIVOL2 and VVO2L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications, 2022. Chemistry – A European JournalChemistry – A European Journal. 28(40):e202200105.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIVO2+ and VIVOL2+, where L=2,2?-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIVO(picolinato)2 and VVO2(phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin?VVO2(phen) and trypsin?VIVO(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium?protein interactions.

Oliveira, AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC.  2022.  Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis, 2022. ACS Chemical BiologyACS Chemical Biology. 17(7):1901-1909.: American Chemical Society AbstractWebsite

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.

Gonçalves, AM, Sousa Â, Pedro AQ, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA.  2022.  Advances in Membrane-Bound Catechol-O-Methyltransferase Stability Achieved Using a New Ionic Liquid-Based Storage Formulation. International Journal of Molecular Sciences. 23, Number 13 AbstractWebsite

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson’s disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs’ design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at −80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.

2021
Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

Lima, CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F.  2021.  Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins, 2021. Chemistry – A European JournalChemistry – A European Journal. n/a(n/a): John Wiley & Sons, Ltd AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

Polino, M, Rho HS, Pina MP, Mallada R, Carvalho AL, Romão MJ, Coelhoso I, Gardeniers JGE, Crespo JG, Portugal CAM.  2021.  Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes. 11, Number 8 AbstractWebsite

Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.

2020
Terao, M, Garattini E, Romão MJ, Leimkühler S.  2020.  Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes, 2020. Journal of Biological ChemistryJournal of Biological Chemistry. 295(16):5377-5389.: Elsevier AbstractWebsite

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.

dos Santos, R, Iria I, Manuel AM, Leandro AP, Madeira CAC, Goncalves J, Carvalho AL, Roque AC.  2020.  Magnetic Precipitation: A New Platform for Protein Purification, 2020. Biotechnology JournalBiotechnology Journal. n/a(n/a):2000151.: John Wiley & Sons, Ltd AbstractWebsite

One of the trends in downstream processing comprises the use of ?anything-but-chromatography? methods to overcome the current downfalls of standard packed-bed chromatography. Precipitation and magnetic separation are two techniques already proven to accomplish protein purification from complex media, yet never used in synergy. With the aim to capture antibodies directly from crude extracts, a new approach combining precipitation and magnetic separation was developed and named as affinity magnetic precipitation. A precipitation screening, based on the Hofmeister series, and a commercial precipitation kit were tested with affinity magnetic particles to assess the best condition for antibody capture from human serum plasma and clarified cell supernatant. The best conditions were obtained when using PEG3350 as precipitant at 4°C for 1h, reaching 80% purity and 50% recovery of polyclonal antibodies from plasma, and 99% purity with 97% recovery yield of anti-TNFα mAb from cell supernatants. These results show that the synergetic use of precipitation and magnetic separation can represent an alternative for the efficient capture of antibodies. This article is protected by copyright. All rights reserved

Leisico, F, Godinho LM, Gonçalves IC, Silva SP, Carneiro B, Romão MJ, Santos-Silva T, de Sá-Nogueira I.  2020.  Multitask ATPases (NBDs) of bacterial ABC importers type I and their interspecies exchangeability, 2020. 10(1):19564. AbstractWebsite

ATP-binding cassette (ABC) type I importers are widespread in bacteria and play a crucial role in its survival and pathogenesis. They share the same modular architecture comprising two intracellular nucleotide-binding domains (NBDs), two transmembrane domains (TMDs) and a substrate-binding protein. The NBDs bind and hydrolyze ATP, thereby generating conformational changes that are coupled to the TMDs and lead to substrate translocation. A group of multitask NBDs that are able to serve as the cellular motor for multiple sugar importers was recently discovered. To understand why some ABC importers share energy-coupling components, we used the MsmX ATPase from Bacillus subtilis as a model for biological and structural studies. Here we report the first examples of functional hybrid interspecies ABC type I importers in which the NBDs could be exchanged. Furthermore, the first crystal structure of an assigned multitask NBD provides a framework to understand the molecular basis of the broader specificity of interaction with the TMDs.

Gomes, AS, Ramos H, Gomes S, Loureiro JB, Soares J, Barcherini V, Monti P, Fronza G, Oliveira C, Domingues L, Bastos M, Dourado DFAR, Carvalho AL, Romão MJ, Pinheiro B, Marcelo F, Carvalho A, Santos MMM, Saraiva L.  2020.  SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations, 2020. 1864(1):129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Oliveira, AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Pereira IAC.  2020.  Towards the mechanistic understanding of enzymatic CO2 reduction, 2020. ACS CatalysisACS Catalysis. : American Chemical Society AbstractWebsite

Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.

2019
Mota, C, Santos Silva T, Terao M, Garattini E, Romão MJ, Leimkuehler S.  2019.  Aldehyde Oxidases as Enzymes in Phase I Drug Metabolism. Pharmaceutical Biocatalysis. (Peter Grunwald, Ed.)., New York: Jenny Stanford Publishing
2018
Mota, C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ.  2018.  Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics, 2018. 368:35-59. AbstractWebsite

Aldehyde oxidases are molybdenum and flavin dependent enzymes characterized by a very wide substrate specificity and performing diverse reactions that include oxidations (e.g., aldehydes and aza-heterocycles), hydrolysis of amide bonds, and reductions (e.g., nitro, S-oxides and N-oxides). Oxidation reactions and amide hydrolysis occur at the molybdenum site while the reductions are proposed to occur at the flavin site. AOX activity affects the metabolism of different drugs and xenobiotics, some of which designed to resist other liver metabolizing enzymes (e.g., cytochrome P450 monooxygenase isoenzymes), raising its importance in drug development. This work consists of a comprehensive overview on aldehyde oxidases, concerning the genetic evolution of AOX, its diversity among the human population, the crystal structures available, the known catalytic reactions and the consequences in pre-clinical pharmacokinetic and pharmacodynamic studies. Analysis of the different animal models generally used for pre-clinical trials and comparison between the human (hAOX1), mouse homologs as well as the related xanthine oxidase (XOR) are extensively considered. The data reviewed also include a systematic analysis of representative classes of molecules that are hAOX1 substrates as well as of typical and well characterized hAOX1 inhibitors. The considerations made on the basis of a structural and functional analysis are correlated with reported kinetic and metabolic data for typical classes of drugs, searching for potential structural determinants that may dictate substrate and/or inhibitor specificities.

Bule, P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA.  2018.  Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction, 2018. Scientific Reports. 8(1):6987. AbstractWebsite

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.

Santarsia, S, Grosso AS, Trovão F, Jiménez-Barbero J, Carvalho AL, Nativi C, Marcelo F.  2018.  Molecular recognition of a Thomsen-Friedenreich antigen mimetic targeting human galectin-3, 2018. ChemMedChem. Aug 9. doi: 10.1002/cmdc.201800525. [Epub ahead of print](ja): Wiley-Blackwell AbstractWebsite

Overexpression of the Thomsen-Friedenreich (TF) antigen in cell membrane proteins occurs in 90% of adenocarcinomas. Additionally, the binding of the TF-antigen to human galectin-3 (Gal-3), also frequently overexpressed in malignancy, promotes cancer progression and metastasis. In this context, structures that interfere with this specific interaction display the potential to prevent cancer metastasis. Herein, a multidisciplinary approach, combining the optimized synthesis of a TF-antigen mimetic with NMR, X-ray crystallography methods and isothermal titration calorimetry assays has been employed to unravel the molecular structural details that govern the Gal-3/TF-mimetic interaction. The TF-mimetic presents a binding affinity for Gal-3 similar to the TF-natural antigen and retains the binding epitope and the bioactive conformation observed for the native antigen. Furthermore, from a thermodynamic perspective a decrease in the enthalpic contribution was observed for the Gal-3/TF-mimetic complex, however this behaviour is compensated by a favourable entropy gain. From a structural perspective, these results establish our TF-mimetic as a scaffold to design multivalent solutions to potentially interfere with Gal-3 aberrant interactions and likely be used to hamper Gal-3-mediated cancer cells adhesion and metastasis.

Gomes, AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL.  2018.  The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. International Journal of Molecular Sciences. 19, Number 4}, ARTICLE NUMBER = {1184 AbstractWebsite

The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.

Kumar, K, Correia M, Pires VR, Dhillon A, Sharma K, Rajulapati V, Fontes CMGA, Carvalho AL, Goyal A.  2018.  Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules. :-. AbstractWebsite

Abstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of  82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.

2017
Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Bule, P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, Gilbert HJ, Najmudin S, Bayer EA, Fontes CMGA.  2017.  Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes, 2017. Scientific Reports. 7:759. AbstractWebsite

Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.

Romão, MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S.  2017.  Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Current Opinion in Chemical Biology. 37:39-47. AbstractWebsite

Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species-specific \{AOX\} isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, \{AOX3\} and AOX4). The physiological function of mammalian \{AOX\} isoenzymes is unknown, although human \{AOX1\} is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as \{AOX\} substrates is increasing. The recent crystallization and structure determination of human \{AOX1\} as well as mouse \{AOX3\} has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes.