Publications

Export 28 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Nunes, D, Calmeiro TRR, Nandy S, Pinto JVV, Pimentel A, Barquinha P, Carvalho PAA, Walmsley JCC, Fortunato E, Martins R.  2016.  {Charging effects and surface potential variations of Cu-based nanowires}, nov. Thin Solid Films. 601:45–53. AbstractWebsite

The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WFCuO {\textgreater} WFCu {\textgreater} WFCu2O.

Bahubalindruni, PG, Kiazadeh A, Sacchetti A, Martins J, Rovisco A, Tavares VG, Martins R, Fortunato E, Barquinha P.  2016.  {Influence of Channel Length Scaling on InGaZnO TFTs Characteristics: Unity Current-Gain Cutoff Frequency, Intrinsic Voltage-Gain, and On-Resistance}, jun. JOURNAL OF DISPLAY TECHNOLOGY. 12:515–518., Number 6 Abstract
n/a
Cramer, T, Sacchetti A, Lobato MT, Barquinha P, Fischer V, Benwadih M, Bablet J, Fortunato E, Martins R, Fraboni B.  2016.  {Radiation-Tolerant Flexible Large-Area Electronics Based on Oxide Semiconductors}, jul. ADVANCED ELECTRONIC MATERIALS. 2, Number 7 Abstract
n/a
Kiazadeh, A, Gomes HL, Barquinha P, Martins J, Rovisco A, Pinto JV, Martins R, Fortunato E.  2016.  {Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors}. APPLIED PHYSICS LETTERS. 109, Number 5 Abstract
n/a
Bahubalindrun, P, Tavares V, Barquinha P, de Oliveira PG, Martins R, Fortunato E.  2016.  {InGaZnO TFT behavioral model for IC design}. Analog Integrated Circuits and Signal Processing. 87:73–80., Number 1 AbstractWebsite
n/a
Bahubalindruni, P, Tavares V, Borme J, Barquinha P, Oliveira P, Fortunato E, Martins R.  2016.  {InGaZnO Thin Film Transistor Based Four-Quadrant High-Gain Analog Multiplier on Glass}. IEEE Electron Device Letters. :1–1. AbstractWebsite
n/a
Deuermeier, J, Bayer TJM, Yanagi H, Kiazadeh A, Martins R, Klein A, Fortunato E.  2016.  {Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3 interface}. MATERIALS RESEARCH EXPRESS. 3, Number 4 Abstract
n/a
Besleaga, C, Stan GE, Pintilie I, Barquinha P, Fortunato E, Martins R.  2016.  {Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor}. Applied Surface Science. 379:270–276. AbstractWebsite

The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

2015
Barquinha, P, Pereira S, Pereira LÍ, Wojcik P, Grey P, Martins R, Fortunato E.  2015.  {Flexible and Transparent WO 3 Transistor with Electrical and Optical Modulation}, may. Advanced Electronic Materials. 1:n/a–n/a., Number 5 AbstractWebsite
n/a
Kiazadeh, A, Salgueiro D, Branquinho R, Pinto J, Gomes HL, Barquinha P, Martins R, Fortunato E.  2015.  {Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress}, jun. APL Materials. 3:062804., Number 6 AbstractWebsite

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20{%} of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

Bernacka-Wojcik, I, Aguas H, Carlos FF, Lopes P, Wojcik PJ, Costa MN, Veigas B, Igreja R, Fortunato E, Baptista PV, Martins R.  2015.  {Single Nucleotide Polymorphism Detection Using Gold Nanoprobes and Bio-Microfluidic Platform With Embedded Micro lenses}, jun. BIOTECHNOLOGY AND BIOENGINEERING. 112:1210–1219., Number 6 Abstract
n/a
G-Berasategui, E, Zubizarreta C, Bayón R, Barriga J, Barros R, Martins R, Fortunato E.  2015.  {Study of the optical, electrical and corrosion resistance properties of AZO layers deposited by DC pulsed magnetron sputtering}, jun. Surface and Coatings Technology. 271:141–147. AbstractWebsite

Aluminium-doped zinc oxide (AZO) is a common material used as a front contact layer on chalcopyrite CuInGaSe2 (CIGS)-based thin-film solar cells since it combines optimum optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts are required to develop high-performance CIGS solar cells. However, the durability of the cells is highly influenced by the corrosion resistance behaviour of the AZO layers. In this work, an exhaustive study of the aluminium-doped zinc oxide layers (AZO) deposited by pulsed DC magnetron sputtering (MS) has been performed. The optical, electrical and electrochemical corrosion resistance properties of the AZO layers have been evaluated as a function of the deposition pressure. The results show that adjusting the deposition pressure could develop AZO layers with very high electrochemical corrosion resistance in chlorinated aqueous media combined with optimum electrical and optical properties. Layers grown at 3×10−3mbar pressure present very high corrosion resistance values (in the order of 106 {\$}Ømega{\$}) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation. Besides, these layers are highly transparent with an average transmittance in the visible range above 90{%} and with a low resistivity of 6.8×10−4 {\$}Ømega{\$}cm for a 1000nm films thickness, making them optimum candidate front contact for high-performance and high durability CIGS solar cells.

Veigas, B, Fortunato E, Baptista PV.  2015.  {Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives}, jan. Sensors. 15:10380–10398., Number 5: Multidisciplinary Digital Publishing Institute AbstractWebsite

In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs' greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategies—from production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab.

Santos, L, Nunes D, Calmeiro T, Branquinho R, Salgueiro D, Barquinha P, Pereira LÍ, Martins R, Fortunato E.  2015.  {Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.}, jan. ACS applied materials {&} interfaces. 7:638–46., Number 1 AbstractWebsite

Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

Pavan, M, Rühle S, Ginsburg A, Keller DA, Barad H-N, Sberna PM, Nunes D, Martins R, Anderson AY, Zaban A, Fortunato E.  2015.  {TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis}, jan. Solar Energy Materials and Solar Cells. 132:549–556. AbstractWebsite

Here we present for the first time a TiO2/Cu2O all-oxide heterojunction solar cell entirely produced by spray pyrolysis onto fluorine doped tin oxide (FTO) covered glass substrates, using silver as a back contact. A combinatorial approach was chosen to investigate the impact of the TiO2 window layer and the Cu2O light absorber thicknesses. We observe an open circuit voltage up to 350mV and a short circuit current density which is strongly dependent of the Cu2O thickness, reaching a maximum of {\~{}}0.4mA/cm2. Optical investigation reveals that a thickness of 300nm spray pyrolysis deposited Cu2O is sufficient to absorb most photons with an energy above the symmetry allowed optical transition of 2.5eV, indicating that the low current densities are caused by strong recombination in the absorber that consists of small Cu2O grains.

Nunes, D, Santos L, Duarte P, Pimentel A, Pinto JV, Barquinha P, Carvalho PA, Fortunato E, Martins R.  2015.  {Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.}, feb. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 21:108–19., Number 1 AbstractWebsite

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

Ullaha, S, Matteis DF, Branquinho R, Fortunato E, Martins R, Davoli I.  2015.  {A combination of solution synthesis solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films}. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). :144–147. Abstract

Aluminum Zinc Oxide has been extensively investigated as a cheap alternative to transparent conducting tin oxide films for electronic and optoelectronic applications. Thin films of Aluminum Zinc Oxide have been developed successfully through a combination of solution combustion synthesis and solution synthesis. Zn(NO3)3·6H2O as metal source was dissolved in 2-methoxyethanol as solvent through combustion synthesis with Urea as fuel while dopant source of AlCl3·6H2O was mixed separately in solvent to avoid aluminum oxide formation in the films. Precursor solutions were obtained mixing Zn {&} Al separate solutions in 9:1, 8:2, and 7:3 ratios respectively with oxide, fuel and dopant concentrations of 0.5, 0.25, 0.1, and 0.05 M. The film stacks have been prepared through spin-coating with heating at 400°C for 10 minutes after each deposition to remove residuals and evaporate solvents. Thermal annealing in oven at 600°C for 1 hour followed by rapid thermal annealing at 500°C {&} 600°C first in vacuum and then in N2-5{%}H2 environment respectively for 10 minutes each reduced the resistivity of film stacks. Film stack with 10 layers for an average thickness of 0.5$μ$m gave the best Hall Effect resistivity of 3.2 × 10-2 $Ømega$-cm in the case of 0.5M solution with Zn:Al mixing ratio of 9:1 for RTA annealings at 600°C with an average total transparency of 80 {%} in the wavelength range of 400-1200 nm. The results show a clear trend that increasing the amount of ingredients resistivity could further be decreased.

Nandy, S, Thapa R, Kumar M, Som T, Bundaleski N, Teodoro OMND, Martins R, Fortunato E.  2015.  {Efficient Field Emission from Vertically Aligned Cu2O1-delta(111) Nanostructure Influenced by Oxygen Vacancy}. ADVANCED FUNCTIONAL MATERIALS. 25:947–956., Number 6 Abstract
n/a
Kololuoma, T, Leppäniemi J, Majumdar H, Branquinho R, Herbei-Valcu E, Musat V, Martins R, Fortunato E, Alastalo A.  2015.  {Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics}. J. Mater. Chem. C. 3:1776–1786., Number 8 AbstractWebsite
n/a
Branquinho, R, Salgueiro D, Santa A, Kiazadeh A, Barquinha P, Pereira L, Martins R, Fortunato E.  2015.  {Towards environmental friendly solution-based ZTO/AlOx TFTs}. SEMICONDUCTOR SCIENCE AND TECHNOLOGY. 30, Number 2, SI Abstract
n/a
2014
Branquinho, R, Salgueiro D, Santos L??dia, Barquinha P, Pereira L??s, Martins R, Fortunato E.  2014.  {Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs}. ACS Applied Materials and Interfaces. 6:19592–19599., Number 22 Abstract

Solution processing has been recently considered as an option when trying to reduce the costs associated with deposition under vacuum. In this context, most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm(-2) at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec(-1) and mobility above 1.3 cm(2) V(-1) s(-1).

Zanarini, S, Garino N, Nair JR, Francia C, Wojcik PJ, Pereira L, Fortunato E, Martins R, Bodoardo S, Penazzi N.  2014.  {Contrast Enhancement in Polymeric Electrochromic Devices Encompassing Room Temperature Ionic Liquids}. International Journal of Electrochemical Science. 9:1650–1662., Number 4 Abstract
n/a
Nunes, D, Pimentel A, Barquinha P, Carvalho PA, Fortunato E, Martins R.  2014.  {Cu2O polyhedral nanowires produced by microwave irradiation}. JOURNAL OF MATERIALS CHEMISTRY C. 2:6097–6103., Number 30 Abstract
n/a
Zubizarreta, C, Berasategui EG, Bayon R, Galindo ER, Barros R, Gaspar D, Nunes D, Calmeiro T, Martins R, Fortunato E, Barriga J.  2014.  {Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering}. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 47, Number 48 Abstract
n/a
Bernacka-Wojcik, I, Ribeiro S, Wojcik PJ, Alves PU, Busani T, Fortunato E, Baptista PV, Covas JA, Águas H, Hilliou L, Martins R.  2014.  {Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length}. RSC Advances. 4:56013–56025., Number 99 AbstractWebsite

This paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1–117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number {\textgreater} number of rhombi {\textgreater} contraction width {\textgreater} inter-obstacles distance. The pressure drop measured after three rhombi depends mainly on Re and inter-obstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 $μ$m and inter-obstacles distance of 93 $μ$m, while for the high Re regime a contraction width of 400 $μ$m and inter-obstacle distance of 121 $μ$m are more appropriate. These mixers enabled 80{%} mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 × 104 Pa at Re = 117.6, with a mixer length of 2.5 mm. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.