Export 4181 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Soares, PIP, Lochte F, Echeverria C, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JPMR.  2015.  Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology. 26(42):425704. AbstractWebsite

Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.

Gonçalves, L, Santos Z, Amado MP, Craveiro I, Cabral J, Lapão L, Alves D, Simões R.  2015.  Urban Planning and Health Inequities: looking in a small-scale in a City of Cape Verde. PlosOne Journal. (DOI: 10.1371/journal.pone.0142955): DOI: 10.1371/journal.pone.0142955
Boavida, N.  2015.  The use and influence of indicators in decisions about technology innovation: Quantitative results from questionnaires in Portugal. Scientific Knowledge and the Transgression of Boundaries. (Krings, Bettina, et al, Eds.)., Berlin: Springer
Palma, SI, Rodrigues CA, Carvalho A, Morales PM, Freitas F, Fernandes AR, Cabral JS, Roque ACA.  2015.  A value-added exopolysaccharide as a coating agent for MRI nanoprobes. Nanoscale. (7):14272-14283. AbstractWebsite

Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNP). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNP were synthesized by a thermal decomposition method and transferred to aqueous medium by ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP-DMSA) resulted in a hybrid magnetic-biopolymeric nanosystem (MNP-DMSA-EPS) with a hydrodynamic size of 170 nm, negative surface charge at physiological conditions and transverse to longitudinal relaxivities ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma - HCT116 - and neural stem/progenitor cells - ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms also showed superior performance of MNP-DMSA-EPS in ReNcell VM, for which iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12 - 20 µg Fe/ml) and short incubation time. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP-DMSA or MNP-DMSA-EPS for 14 days. Our study suggests that Fucopol-coated MNP represent useful cell labeling nanoprobes for MRI.

Palma, SICJ, Rodrigues CAV, Freitas F, Carvalho A, Fernandes AR, del Morales MP, Cabral JMS, Roque ACA.  2015.  A value-added exopolysaccharide as a coating agent for MRI nanoprobes. Nanoscale. (7):14272-83. AbstractWebsite

Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNPs). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNPs were synthesized by a thermal decomposition method and transferred to an aqueous medium by a ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP–DMSA) resulted in a hybrid magnetic–biopolymeric nanosystem (MNP–DMSA–EPS) with a hydrodynamic size of 170 nm, a negative surface charge under physiological conditions and transverse to longitudinal relaxivity ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma – HCT116 – and neural stem/progenitor cells – ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms showed a superior performance of MNP–DMSA–EPS in ReNcell VM, for which the iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12–20 μg Fe per ml) and short incubation times. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP–DMSA or MNP–DMSA–EPS for 14 days. Our study suggests that Fucopol-coated MNPs represent useful cell labeling nanoprobes for MRI.

Ferreira, S, Carvalho J, Valente JFA, Corvo MC, Cabrita EJ, Sousa F, Queiroz JA, Cruz C.  2015.  Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification. Journal of Chromatography B. 1006:47–58.: Elsevier Abstract
n/a
Ferraz, R, Costa-Rodrigues J, Fernandes MH, Santos MM, Marrucho IM, Rebelo LPN, Prudencio C, Noronha JP, Petrovski Z, Branco LC.  2015.  Antitumor Activity of Ionic Liquids Based on Ampicillin. Chemmedchem. 10:1480-1483., Number 9 AbstractWebsite
n/a
Correia, HD, Marangon J, Brondino CD, Moura JJG, Romao MJ, Gonzalez PJ, Santos-Silva T.  2015.  Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction. Journal of Biological Inorganic Chemistry. 20:219-229., Number 2 AbstractWebsite

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using C-13-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe(425) and Tyr(535) are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

Delgado, JM, Raymundo A, Vilarigues M, Branco LC, Laia CAT.  2015.  Characterization of a Novel Intrinsic Luminescent Room-Temperature Ionic Liquid Based on P-6,P-6,P-6,P-14 ANS. Chemistry-a European Journal. 21:726-732., Number 2 AbstractWebsite
n/a
Mendo, AS, Figueiredo S, Roma-Rodrigues C, Videira PA, Ma Z, Diniz M, Larguinho M, Costa PM, Lima JC, Pombeiro AJL, Baptista PV, Fernandes AR.  2015.  Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine. Journal of Biological Inorganic Chemistry. 20:935-948., Number 6 AbstractWebsite
n/a
Cruz, L, Basilio N, Mateus N, Pina F, de Freitas V.  2015.  Characterization of Kinetic and Thermodynamic Parameters of Cyanidin-3-glucoside Methyl and Glucuronyl Metabolite Conjugates. Journal of Physical Chemistry B. 119:2010-2018., Number 5 AbstractWebsite
n/a
Carrera, GVSM, Jordao N, Branco LC, da Ponte MN.  2015.  CO2 capture and reversible release using mono-saccharides and an organic superbase. Journal of Supercritical Fluids. 105:151-157. AbstractWebsite
n/a
Seixas, JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Goncalves AML, Romao MJ, Bernardes GJL, Santos-Silva T, Romao CC.  2015.  A contribution to the rational design of Ru(CO)(3)Cl2L complexes for in vivo delivery of CO. Dalton Transactions. 44:5058-5075., Number 11 AbstractWebsite

A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)(3)Cl2L] (L = DMSO (3), L-H3CSO(CH2)(2)CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)(2)CH-(NH2)CO2H (6b); 3-NC5H4(CH2)(2)SO3.Na (7); 4-NC5H4(CH2)(2)SO3Na (8); PTA (9); DAPTA (10); H3CS-(CH2)(2)CH(OH) CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWV) shows the addition of Ru-II(CO)(H2O)(4) at the His15 binding site. Soakings with 7 (4UWU) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)(3)](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO- on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.

Moro, AJ, Rome B, Aguilo E, Arcau J, Puttreddy R, Rissanen K, Lima JC, Rodriguez L.  2015.  A coumarin based gold(I)-alkynyl complex: a new class of supramolecular hydrogelators. Organic & Biomolecular Chemistry. 13:2026-2033., Number 7 AbstractWebsite
n/a
Palma, SICJ, Carvalho A, Silva J, Martins P, Marciello M, Fernandes AR, del Puerto Morales M, Roque ACA.  2015.  Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: physicochemical and in vitro characterization. Contrast Media & Molecular Imaging. 10:320–328., Number 4 AbstractWebsite

Gum arabic (GA) is a hydrophilic composite polysaccharide derived from exudates of Acacia senegal and Acacia seyal trees. It is biocompatible, possesses emulsifying and stabilizing properties and has been explored as coating agent of nanomaterials for biomedical applications, namely magnetic nanoparticles (MNPs). Previous studies focused on the adsorption of GA onto MNPs produced by co-precipitation methods. In this work, MNPs produced by a thermal decomposition method, known to produce uniform particles with better crystalline properties, were used for the covalent coupling of GA through its free amine groups, which increases the stability of the coating layer. The MNPs were produced by thermal decomposition of Fe(acac)3 in organic solvent and, after ligand-exchange with meso-2,3-dimercaptosuccinic acid (DMSA), GA coating was achieved by the establishment of a covalent bond between DMSA and GA moieties. Clusters of several magnetic cores entrapped in a shell of GA were obtained, with good colloidal stability and promising magnetic relaxation properties (r2/r1 ratio of 350). HCT116 colorectal carcinoma cell line was used for in vitro cytotoxicity evaluation and cell-labeling efficiency studies. We show that, upon administration at the respective IC50, GA coating enhances MNP cellular uptake by 19 times compared to particles bearing only DMSA moieties. Accordingly, in vitro MR images of cells incubated with increasing concentrations of GA-coated MNP present dose-dependent contrast enhancement. The obtained results suggest that the GA magnetic nanosystem could be used as a MRI contrast agent for cell-labeling applications. Copyright © 2015 John Wiley & Sons, Ltd.

Silva, SA, Bonifacio VDB, Raje VP, Branco PS, Machado PFB, Correia IJ, Aguiar-Ricardo A.  2015.  Design of oligoaziridine-PEG coatings for efficient nanogold cellular biotagging. RSC ADVANCES. 5:10733-10738., Number 14 Abstract
n/a
Viciosa, MT, Santos G, Costa A, Danede F, Branco LC, Jordao N, Correia NT, Dionisio M.  2015.  Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid. Physical Chemistry Chemical Physics. 17:24108-24120., Number 37 AbstractWebsite
n/a
Glynn, J, Fortes P, Krook-Riekkola A, Labriet M, Vielle M, Kypreos S, Lehtilä A, Mischke P, Dai H, Gargiulo M, Helgesen PI, Kober T, Summerton P, Merven B, Selosse S, Karlsson K, Strachan N, ÓGallachóir B.  2015.  Economic Impacts of Future Changes in the Energy System—Global Perspectives. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:333-358.: Springer International Publishing Abstract
n/a
Glynn, J, Fortes P, Krook-Riekkola A, Labriet M, Vielle M, Kypreos S, Lehtilä A, Mischke P, Dai H, Gargiulo M, Helgesen PI, Kober T, Summerton P, Merven B, Selosse S, Karlsson K, Strachan N, ÓGallachóir B.  2015.  Economic Impacts of Future Changes in the Energy System—National Perspectives. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:359-387.: Springer International Publishing Abstract
n/a
Coutinho, IB, Freitas A, Macanita AL, Lima JC.  2015.  Effect of water content on the acid-base equilibrium of cyanidin-3-glucoside. Food Chemistry. 172:476-480. AbstractWebsite
n/a
Palma, SI, Marciello M, Carvalho A, Veintemillas-Verdaguer S, Morales Mdel P, Roque AC.  2015.  Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J Colloid Interface Sci. 437:147-55. AbstractWebsite

Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

Jordao, N, Cruz H, Branco A, Pina F, Branco LC.  2015.  Electrochromic Devices Based on Disubstituted Oxo-Bipyridinium Ionic Liquids. Chempluschem. 80:202-208., Number 1 AbstractWebsite
n/a
Chiodi, A, Taylor PG, Seixas J, Simões S, Fortes P, Gouveia JP, Dias L, ÓGallachóir B.  2015.  Energy Policies Influenced by Energy Systems Modelling—Case Studies in UK, Ireland, Portugal and G8. Informing Energy and Climate Policies Using Energy Systems Models. 30(George Giannakidis, Labriet, Maryse, Brian ÓGallachóir, GianCarlo Tosato, Eds.).:15-41.: Springer International Publishing Abstract
n/a
Nascimento, SMC, Linhares JMM, Joao CAR, Amano K, Montagner C, Melo MJ, Vilarigues M.  2015.  Estimating the Colors of Paintings. Computational Color Imaging, Cciw 2015. 9016(Tremeau, A., Schettini, R., Tominaga, S., Eds.).:236-242. Abstract
n/a
Basilio, N, Laia CAT, Pina F.  2015.  Excited-State Proton Transfer in Confined Medium. 4-Methy1-7-hydroxyflavylium and beta-Naphthol Incorporated in Cucurbit 7 uril. Journal of Physical Chemistry B. 119:2749-2757., Number 6 AbstractWebsite
n/a
loading