Export 1241 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Lenis-Rojas, OA, Fernandes AR, Roma-Rodrigues C, Baptista PV, Marques F, Perez-Fernandez D, Guerra-Varela J, Sanchez L, Vazquez-Garcia D, Torres LM, Fernandez A, Fernandez JJ.  2016.  Heteroleptic mononuclear compounds of ruthenium(ii): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, 2016. Dalton Transactions. 45(47):19127-19140.: The Royal Society of Chemistry AbstractWebsite

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a-5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2[prime or minute]-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P-{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(ii) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 +/- 2.82 [small mu ]M and 20.02 +/- 1.46 [small mu ]M, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L-1 for compound 1a to 170.30 mg L-1 for compound 2a.

Tiago, GAO, Ribeiro APC, Mahmudov KT, da Silva MFCG, Branco LC, Pombeiro AJL.  2016.  Mononuclear copper(II) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium, 2016. Rsc Advances. 6(86):83412-83420. AbstractWebsite
n/a
Granadeiro, CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Van Deun R, de Castro B, Balula SS.  2016.  A novel red emitting material based on polyoxometalate@periodic mesoporous organosilica, 2016. Microporous and Mesoporous Materials. 234:248-256. AbstractWebsite
n/a
Roma-Rodrigues, C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV.  2016.  Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo, 2016. 11 Abstract
n/a
Ruivo, A, Ferro M, Andrade SM, Rocha J, Pina F, Laia CAT.  2016.  Photoluminescent Nanocrystals in a Multicomponent Aluminoborosilicate Glass, 2016. Journal of Physical Chemistry C. 120(43):24925-24931. AbstractWebsite
n/a
Aguilo, E, Gavara R, Baucells C, Guitart M, Lima JC, Llorca J, Rodriguez L.  2016.  Tuning supramolecular aurophilic structures: the effect of counterion, positive charge and solvent, 2016. Dalton Transactions. 45(17):7328-7339. AbstractWebsite
n/a
Bari, M, Loureiro J, Pudas M, Tappura K, Jaakola K, Ruoho M, Tittonen I, Volz S, Pavan C, Costabello K, Bollen D, Haslam M, Ferreira I.  2016.  TransFlexTeg: Large area transparent thin film thermoelectric devices for smart window and flexible applications, 20-23 Sep. 14th European Conference on Thermoelectrics, ECT 2016. Abstract

The main objective of TransFlexTeg is to develop an innovative large area distributed sensor network integrating transparent thin film thermoelectric devices and sensors for multifunctional smart windows and flexible high impact volume applications. Different breakthrough concepts will be developed: 1) large area high performance transparent thermoelectric thin films deposited on flexible substrates for thermal energy harvesting; 2) low cost high throughput thin film thermal sensors for thermal mapping and gesture sensing; 3) flexible smart windows and walls with energy harvesting, environmental sensing and wireless communication functionalities. This technology aims to demonstrate the functionalities of a smart window able to measure air quality and environmental parameters such as temperature, sun radiation and humidity. The data is automatically collected and can be utilized for controlling heating, cooling and ventilation systems of indoors. Active radio interface enables long range communication and long term data collection with WiFi or a similar base station. The proposed concept of smart windows replaces several conventional sensors with a distributed sensor network that is integrated invisibly into windows. In addition to the power generated from the thermal energy harvesting, the thermoelectric elements (TE) are also used as temperature sensors that, while being distributed over large area, enable thermal mapping of the area instead of just one or a few values measured from particular points. This smart window can be produced on glass. The active layer itself can be flexible glass layer or polymer sheet, which will significantly broaden the field of applications and improve business opportunities. Both can be manufactured in batch, or in Roll to Roll Atomic Layer Deposition (R2R ALD) process. High environmental impact is expected with savings of more than 25% of the electrical usage of residential homes and office buildings.

Raposo, LR, Roma-Rodrigues C, Faísca P, Alves M, Henriques J, Carvalheiro MC, Corvo LM, Baptista PV, Pombeiro AJL, Fernandes AR.  2016.   Immortalization and characterization of a new canine mammary tumor cell line FR37-CMT. J. Veterinary and Comparative Oncology. AbstractWebsite

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Martins, M, Baptista PV, Mendo AS, Correia C, Videira P, Rodrigues AS, Muthukumaran J, Santos-Silva T, Silva A, da Silva FGMC, Gigante J, Duarte A, Pombeiro AJL, Fernandes AR.  2016.   In vitro and in vivo biological characterization of the anti-proliferative potential of a cyclic trinuclear organotin(IV) complex. Molecular BioSystems. (12) AbstractWebsite

Identification of novel molecules that can selectively inhibit the growth of tumor cells, avoid causing side effects to patients and/or intrinsic or acquired resistance, usually associated with common chemotherapeutic agents, is of utmost importance. Organometallic compounds have gained importance in oncologic chemotherapy, such as organotin(IV) complexes. In this study, we assessed the anti-tumor activity of the cyclic trinuclear organotin(IV) complex with an aromatic oximehydroxamic acid group [nBu2Sn(L)]3(H2L = N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) – MG85 – and provided further characterization of its biological targets. We have previously shown the high anti-proliferative activity of this complex against human colorectal and hepatocellular carcinoma cell lines and lower cytotoxicity in neonatal non-tumor fibroblasts. MG85 induces tumor cell apoptosis and down-regulation of proteins related to tubulin dynamics (TCTP and COF1). Further characterization included the: (i) evaluation of interference in the cell cycle progression, including the expression of critical genes; (ii) affinity to DNA and the corresponding mode of binding; (iii) genotoxic potential in cells with deficient DNA repair pathways; and (iv) in vivo tumor reduction efficiency using mouse colorectal carcinoma xenografts.

Palma, SICJ, Fernandes AR, Roque ACA.  2016.  An affinity triggered MRI nanoprobe for pH-dependent cell labeling. RSC Adv.. 6:113503–113512., Number 114: Royal Society of Chemistry AbstractWebsite

The pH-sensitive affinity pair composed by neutravidin and iminobiotin was used to develop a multilayered Magnetic Resonance Imaging (MRI) nanoprobe responsive to the acidic pH of tumor microenvironment. The multilayer system was assembled on meso-2,3-dimercaptosuccinic acid-coated iron oxide magnetic nanoparticles (MNP), which convey negative MRI contrast enhancement properties to the nanoprobe. The outer stealth PEG-layer is altered in acidic media due to the disruption of interactions between neutravidin–iminobiotin. As a consequence, the positively charged inner layer is exposed and enhances interactions with cells. The nanoprobe uptake by HCT116 cells cultured in vitro under acidic conditions had a 2-fold increase compared to the uptake at physiological pH. The uptake difference is particularly clear in T2-weighted MRI phantoms of cells incubated with the nanoprobes at both pH conditions. This work sets the proof-of-concept of a MNP-based MRI nanoprobe targeting acidic tumor microenvironment through the use of a specific bio-recognition interaction that is pH-sensitive. This tumor targeting strategy is potentially applicable to the generality of tumors since the typical hypoxic conditions and high glycolysis rate in cancer cells create an acidic environment common to the majority of cancer types.

Fernandes, CSM, dos Santos R, Ottengy S, Viecinski AC, Béhar G, Mouratou B, Pecorari F, Roque ACA.  2016.  Affitins for protein purification by affinity magnetic fishing. Journal of Chromatography A. 1457:50–58.: Elsevier B.V. AbstractWebsite

Currently most economical and technological bottlenecks in protein production are placed in the down-stream processes. With the aim of increasing the efficiency and reducing the associated costs, variousaffinity ligands have been developed. Affitins are small, yet robust and easy to produce, proteins derivedfrom the archaeal extremophilic “7 kDa DNA-binding” protein family. By means of combinatorial pro-tein engineering and ribosome display selection techniques, Affitins have shown to bind a diversity oftargets. In this work, two previously developed Affitins (anti-lysozyme and anti-IgG) were immobilizedonto magnetic particles to assess their potential for protein purification by magnetic fishing. The opti-mal lysozyme and human IgG binding conditions yielded 58 mg lysozyme/g support and 165 mg IgG/gsupport, respectively. The recovery of proteins was possible in high yield (≥95{%}) and with high purity,namely ≥95{%} and 81{%}, when recovering lysozyme from Escherichia coli supernatant and IgG from humanplasma, respectively. Static binding studies indicated affinity constants of 5.0 × 104M−1and 9.3 × 105M−1for the anti-lysozyme and anti-IgG magnetic supports. This work demonstrated that Affitins, which canbe virtually evolved for any protein of interest, can be coupled onto magnetic particles creating novelaffinity adsorbents for purification by magnetic fishing.

Moretto, S, Robinson D, Schippl J, Moniz AB.  2016.  Beyond Visions: Survey to the High-speed Train Industry. 6th Transport Research Arena. :1839-1846. Abstract

In Europe, the technology development of high-speed trains is increasingly exposed to societal needs, driven by ICT advancements, external to traditional design. Together with the liberalisation of the rail markets and increase pressures from other transport modes leads to an unprecedented situation where planers, operators and suppliers of high-speed have to take decision in this complex and competitive environment.
In such broadening of elements influencing design and, thus, product development process, from the survey here to be presented, it was not observed technology options assessment or strategic agenda setting from visions shifting in the same way.
For the high-speed train industry this new trend requires going beyond the visions of the past 15 to 20 years’ practices of “sector endogenous” and structurally closed strategic methods approaches to a broader interaction with the widening of societal actors now capable of being active contributors to innovation from digitalization.
This way to understand the European industry readiness for undertaking such supra systemic challenge, this paper presents the results from a survey conducted by the authors to 74 representatives of the high-speed train innovation chain regarding to which extent societal embedding is considered in the drafting of their visions and technology development projects.
This work becomes even more pertinent if considered that the debate is now open in the railway industry (not exclusive to high-speed trains) as they are launching the joint initiative SHIFT2RAIL, revise ERRAC (the European Rail Research Advisory Council) mandate and enter in a new research cycle with the European research framework Horizon 2020.

Moretto, S, Robinson D, Schippl J, Moniz AB.  2016.  Beyond Visions: Survey to the High-speed Train Industry. Transportation Research Procedia. 14:1839-1846. AbstractWebsite

In Europe, the technology development of high-speed trains is increasingly exposed to societal needs, driven by ICT advancements, external to traditional design. Together with the liberalisation of the rail markets and increase pressures from other transport modes leads to an unprecedented situation where planers, operators and suppliers of high-speed have to take decision in this complex and competitive environment.
In such broadening of elements influencing design and, thus, product development process, from the survey here to be presented, it was not observed technology options assessment or strategic agenda setting from visions shifting in the same way.
For the high-speed train industry this new trend requires going beyond the visions of the past 15 to 20 years’ practices of “sector endogenous” and structurally closed strategic methods approaches to a broader interaction with the widening of societal actors now capable of being active contributors to innovation from digitalization.
This way to understand the European industry readiness for undertaking such supra systemic challenge, this paper presents the results from a survey conducted by the authors to 74 representatives of the high-speed train innovation chain regarding to which extent societal embedding is considered in the drafting of their visions and technology development projects.
This work becomes even more pertinent if considered that the debate is now open in the railway industry (not exclusive to high-speed trains) as they are launching the joint initiative SHIFT2RAIL, revise ERRAC (the European Rail Research Advisory Council) mandate and enter in a new research cycle with the European research framework Horizon 2020.

Vinhas, R, Correia C, Ribeiro P, Lourenço A, de Sousa AB, Fernandes AR, Baptista PV.  2016.  Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes. Analytical and Bioanalytical Chemistry. 408(19):5277–5284. AbstractWebsite

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

Aroso, IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte ARC.  2016.  Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics. 98:57-66.Website
Batalha, IL, Zhou H, Lilley K, Lowe CR, Roque ACA.  2016.  Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. Journal of Chromatography A. 1457:76–87.: Elsevier B.V. AbstractWebsite

Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3. Ligand A8A3 was coupled onto both cross-linked agarose and magnetic nanoparticles, presenting higher binding capacities (100-fold higher) when immobilized on the magnetic support. The magnetic adsorbent was further screened against a tryptic digest of two phosphorylated proteins ($\alpha$- and $\beta$-caseins) and one non-phosphorylated protein (bovine serum albumin, BSA). The MALDI-TOF mass spectra of the eluted peptides allowed the identification of nine phosphopeptides, comprising both mono- and multi-phosphorylated peptides.

Batista, AG, Najdi S, Godinho DM, Serrano F, Ortigueira MD, Rato RT.  2016.  A Multichannel Time-Frequency and Multi-Wavelet Toolbox for Uterine Electromyography Processing and Visualisation. Computers in Biology and Medicine.. 76.1:178-191.
João, C, Baptista AC, Ferreira I, Silva JC, Borges JP.  2016.  Natural Nanofibres for Composite Applications. Fibrous and Textile Materials for Composite Applications. (Sohel Rana, Raul Fangueiro, Eds.).:261-299., Singapore: Springer Singapore Abstract

Cellulose and chitin are the two most abundant natural polysaccharides. Both have a semicrystalline microfibrillar structure from which nanofibres can be extracted. These nanofibres are rod-like microcrystals that can be used as nanoscale reinforcements in composites due to their outstanding mechanical properties. This chapter starts by reviewing the sources, extraction methods and properties of cellulose and chitin nanofibres. Then, their use in the fabrication of structural and functional nanocomposites and the applications that have been investigated are reviewed. Nanocomposites are materials with internal nano-sized structures. They benefit from the properties of the nanofillers: low density, nonabrasive, nontoxic, low cost, susceptibility to chemical modifications and biodegradability. Diverse manufacturing technologies have been used to produce films, fibres, foams, sponges, aerogels, etc. Given their natural origin and high stiffness, these polymers have attracted a lot of attention not only in the biomedical and tissue engineering fields but also in areas such as pharmaceutics, cosmetics, agriculture, biosensors and water treatment.

Granadeiro, CM, Ribeiro SO, Kaczmarek AM, Cunha-Silva L, Almeida PL, Gago S, Van Deun R, de Castro B, Balula SS.  2016.  A novel red emitting material based on polyoxometalate@ periodic mesoporous organosilica. Microporous and Mesoporous Materials. 234:248-256. AbstractWebsite

The first lanthanopolyoxometalate-supported bifunctional periodic mesoporous organosilica (BPMO) composite is here reported. The incorporation of decatunsgstoeuropate anions ([Eu(W5O18)2]9−) within the porous channels of an ethylene-bridged TMAPS-functionalized BPMO produced a luminescent material exhibiting a strong red emission under UV irradiation. Photoluminescence studies showed an efficient energy transfer process to the lanthanide emitting center in the material (antenna effect). A significant change in the coordination environment of Eu3+ ions was observed after its incorporation into the TMAPS-functionalized material. The possible reason for this is discussed within the paper.

Roma-Rodrigues, C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV.  2016.  Peptide coated gold nanoparticles for in vivo targeting of angiogenesis. International J. Nanomedicine. (11):2633–2639. AbstractWebsite

In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.

Batalha, ÍL, Roque ACA.  2016.  Petasis-Ugi ligands: New affinity tools for the enrichment of phosphorylated peptides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 1031:86–93.: Elsevier B.V. AbstractWebsite

Affinity chromatography is a widespread technique for the enrichment and isolation of biologics, which relies on the selective and reversible interaction between affinity ligands and target molecules. Small synthetic affinity ligands are valuable alternatives due to their robustness, low cost and fast ligand development. This work reports, for the first time, the use of a sequential Petasis-Ugi multicomponent reaction to generate rationally designed solid-phase combinatorial libraries of small synthetic ligands, which can be screened for the selection of new affinity adsorbents towards biological targets. As a proof of concept, the Petasis-Ugi reaction was here employed in the discovery of affinity ligands suitable for phosphopeptide enrichment. A combinatorial library of 84 ligands was designed, synthesized on a chromatographic solid support and screened in situ for the specific binding of phosphopeptides binding human BRCA1C-terminal domains. The success of the reaction on the chromatographic matrix was confirmed by both inductively coupled plasma atomic emission spectroscopy and fluorescence microscopy. Three lead ligands were identified due to their superior performance in terms of binding capacity and selectivity towards the phosphorylated moiety on peptides, which showed the feasibility of the Petasis-Ugi reaction for affinity ligand development.

Batalha, ÍL, Roque ACA.  2016.  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview. Phospho-Proteomics. 1355(Methods in Molecular Biology):193–209. AbstractWebsite

Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4 /$\gamma$-Fe2O3 ) superparamagnetic core and a coating shell which presents affi nity for a specifi c target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually fi rst functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specifi c area, and then with an outer layer of a phosphate-affi nity material. Fe3O4 -coating materials include metal oxides, rare earth metal-based compounds, immobilized-metal ions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks.

Ruivo, A, Andrade S, Ferro M, Rocha J, Laia C, Pina F.  2016.  Photoluminescent Nanocrystals in a Multicomponent Aluminoborosilicate Glass. Journal of Physical Chemistry C. 120:24925−24931.
Craveiro, R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionísio M, Barreiros S, Reis RL, Duarte ARC, Paiva A.  2016.  Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids. 215:534-540.Website
Yang, Y, Wikieł AJ, Dall'agnol LT, Eloy P, Genet MJ, Moura JJG, Sand W, Dupont-Gillain CC, Rouxhet PG.  2016.  Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures. Biofouling. 32:95-108.
loading