Export 1423 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Santos, L, Neto JP, Crespo A, Nunes D, Costa N, Fonseca IM, Barquinha P, Pereira L, Silva J, Martins R, Fortunato E.  Submitted.  {WO3 Nanoparticle-Based Conformable pH Sensor}. ACS APPLIED MATERIALS & INTERFACES. 6:12226–12234., Number 15 Abstract

\{pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 +/- 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.\}

2025
Duarte, M, Carvalho AL, Ferreira MC, Caires B, Romão MJ, Prates JAM, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2025.  Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins, 2025. 301(7):110325. AbstractWebsite

Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like R. flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbors one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca+2-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.

Gago, D, Viegas Â, Chagas R, Ferreira LM, Coelhoso I.  2025.  Adsorption-assisted membrane filtration with a cellulose derivative for separation of cationic compounds. Separation and Purification Technology. in press
Phillips, AF, Ferreira LM, Branco PS, Lourenço A.  2025.  The Synthesis of Terpenes Via Enantioselective Organocatalysis. Asian J. Org. Chem.. :e202500229.
Saif, HM, Ferrández-Gómez B, Alves VD, Huertas RM, Alemany-Molina G, Viegas A, Morallón E, Cazorla-Amorós D, Crespo JG, Pawlowski S.  2025.  Activated carbons for flow electrode capacitive deionization (FCDI) – Morphological, electrochemical and rheological analysis. Desalination. 602:118638. AbstractWebsite

Flow electrode capacitive deionization (FCDI) is a desalination technology employing flowable carbon slurries to remove salt from an influent through the electro-sorption of ions at the surface of pores of activated carbon particles. This study presents an extensive morphological, electrochemical and rheological analysis of flow electrodes prepared using commercial (YP50F, YP80F, Norit, PAC) and lab-synthesized (KUA, PAC-OX) activated carbons. Simultaneous optimization of particle size, surface area, and surface chemistry of activated carbons is essential to enhance desalination efficiency in FCDI applications. The lab-made highly microporous activated carbon (KUA), prepared from a Spanish anthracite, exhibited a remarkably high specific surface area ( 2800 m2/g) but required first a particle size reduction through ball milling (from 56 μm to 12 μm) for the respective flow electrodes to achieve flowability. The slurry of milled fine KUA (designated as KUAF) shows a specific capacitance of 55 F/g, a 38-fold increase compared to its pristine form. The KUA-F flow electrode also achieved a maximum salt adsorption capacity of 185 mg/g, outperforming the leading commercial alternative (YP80F) by 26 %. The FCDI cell with the KUA-F flow electrode exhibited a desalination efficiency of 79 % at 15 wt% loading, surpassing YP80F by 29 %. In contrast, using PAC-OX (oxidized form of PAC), despite increasing oxygen functional groups and with relatively higher specific surface area, led only to a 2 % improvement in desalination performance, highlighting that oxidation alone at larger particle sizes and broader distribution is insufficient.

Pereira, BA, Matos CT, Costa L, Ferreira LM, Crespo JG, Brazinha C.  2025.  Sustainable processing of microalgae protein: Design of biphasic partitioning systems based on natural deep eutectic solvents for C-phycocyanin recovery from model aqueous solutions. Separation and Purification Technology. 353:128510. AbstractWebsite

The development of sustainable protein sources is imperative for addressing the global challenge of food/feed security. Microalgae, which may be sustainably cultivated, are a promising source of proteins, gaining a progressive acceptance among consumers. The purpose of this work is to study the recovery of the protein C-phycocyanin from the microalga Arthrospira platensis (Spirulina), using a biphasic extraction system composed of sustainable solvents. The extraction system studied involves a feed phase, consisting of an aqueous salt solution and the target protein, and an extracting phase composed of a Natural Deep Eutectic Solvent (NADES) with affinity to the target protein. The performance of a specific NADES depends on the characteristics of the components of the NADES, in terms of its hydrophobicity/hydrophilicity balance, aiming the highest possible partitioning coefficient towards C-phycocyanin. It is also important to assure that the NADES phase selected presents a moderate viscosity and leads to a stable interface when in contact with the aqueous feed phase (i.e., presenting a measurable interfacial tension). In this work, after an extensive screening work of more than 71 combinations, the most overall performing combination is presented. This system shows a high partitioning coefficient of 29.4 ± 0.3 and an extraction yield of 99 % for C-phycocyanin (C-PC), demonstrating that the salting-out effect of the phosphate buffer and the hydrophobic character of NADES play a key role in this protein partitioning and recovery.

Royo, B, Lenis-Rojas {OA}, Roma C, Carvalho B, Andrade V, Friães S, Cabezas-Sain P, Fernández {JAA}, Vila {SF}, Arana {AJ}, Sanchez L, Baptista {PV}, Gomes {CSB}, Fernandes {AR}.  2025.  Triazole-Derived Ruthenium(II) Complexes as Novel Candidates for Cancer Therapy. ChemPlusChem. :e202400775.: Wiley | Wiley-VCH Verlag Abstract

The first examples of Ru(II) h6-arene (benzene and p-cymene) complexes containing a bidentate triazolylidene-triazolide ligand have been prepared and fully characterized. Their antiproliferative effect has been investigated against tumour cells A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116dox (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The Ru complex bearing the p-cymene arene group exhibited a stronger antiproliferative effect across all tested cell lines, while the benzene-containing complex displayed higher selectivity toward tumor cells. Both complexes induced apoptosis, likely through ROS production (in the benzene complex), and inhibited tumorigenic processes, including cell migration and angiogenesis. In zebrafish models, they showed strong selectivity for cancer cells with minimal toxicity to healthy cells, effectively reducing the proliferation of HCT116 colorectal cancer cells. This study provides the first in vivo evidence of the anticancer potential of Ru triazolylidenes in zebrafish models.

2024
Sarrato, J, Raimundo B, Domingues L, Filipe SR, Lima CJ, Branco PS.  2024.  Synthesis of inverse push-pull coumarin dyes and their application as solvatochromic probes and labelling agents for bacterial cell membranes, SEP. DYES AND PIGMENTS. 228 Abstract
n/a
Bravo, {AC}, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos {MP}, Maio R, Paulino J, {Viana Baptista} P, Fernandes {AR}, Cravo M.  2024.  Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma: A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples, oct. Cancers. 16, Number 20: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. Methods: Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS–HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. Results: A total of 88 patients, 93% with ECOG-PS 0–1, 57% with resectable disease. ARMS–HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061–3.02

Choroba, K, Zowislok B, Kula S, Machura B, Maron AM, Erfurt K, Cordeiro S, Baptista PV, Fernandes {AR}.  2024.  Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes, nov. Journal Of Medicinal Chemistry. 67:19475–19502., Number 21: ACS - American Chemical Society Abstract

Cu(II) complexes with 2,2′:6′,2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl2(Ln)]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes (Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).

Choroba, K, Zowiślok B, Kula S, Machura B, Maroń {AM }, Erfurt K, Marques C, Cordeiro S, Baptista {PV}, Fernandes {AR}.  2024.  Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes, nov. Journal Of Medicinal Chemistry. : ACS - American Chemical Society Abstract

Cu(II) complexes with 2,2':6',2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl 2(L n )]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes ( Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).

Oliveira, BB, Fernandes AR, Baptista PV.  2024.  Shrinking Cancer Research Barriers: Crafting Accessible Tumor-on-Chip Device for Gene Silencing Assays, nov. Advanced Engineering Materials. : John Wiley & Sons, Ltd. Abstract

Tumor-on-chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo-like microenvironment in cancer research. ToC use microfluidics to provide fine-tune control over environmental factors, high-throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96-well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate-based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip-based cancer models.

Alexandre, D, Fernandes {AR}, Baptista {PV}, Cruz C.  2024.  Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line, jul. Talanta. 274: Elsevier Abstract

Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.

Idiago-López, J, Ferreira D, Asín L, Moros M, Armenia I, Grazú V, Fernandes {AR}, {de la Fuente} {JM }, Baptista {PV}, Fratila {RM }.  2024.  Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes, aug. Nanoscale. 16:15176–15195., Number 32: RSC - Royal Society of Chemistry Abstract

In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for “opening and closing” cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.

{Franco Machado}, J, Cordeiro S, Duarte {JN }, Costa {PJ }, Mendes {PJ }, Garcia {MH}, Baptista {PV}, Fernandes {AR}, Morais {TS }.  2024.  Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents, apr. Inorganic Chemistry. 63:5783–5804., Number 13: ACS - American Chemical Society Abstract

In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.

Rippel, R, Ferreira LM, Branco PS.  2024.  Progress on the Synthesis and Applications of Aminals: Scaffolds for Molecular Diversity, 2024 JUN 10. SYNTHESIS-STUTTGART. Abstract
n/a
Oliveira, AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA.  2024.  An allosteric redox switch involved in oxygen protection in a CO2 reductase, 2024. Nat Chem Biol. 20(1):111-119. AbstractWebsite

Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.

Caseiro, C, McGregor NGS, Alves VD, Carvalho AL, Romão MJ, Davies GJ, Fontes CMGA, Bule P.  2024.  Family GH157 enzyme exhibits broad linkage tolerance and a dual endo/exo- β -glucanase activity on β-glucans, 2024. :137402. AbstractWebsite

The structural and chemical diversity of β-glucans is reflected on the variety of essential biological roles tackled by these polysaccharides. This natural heterogeneity requires an elaborate assortment of enzymatic mechanisms to assemble, degrade or modify, as well as to extract their full biotechnological potential. Recent metagenomic efforts have provided an unprecedented growth in potential new biocatalysts, most of which remain unconfirmed or uncharacterized. Here we report the first biochemical and structural characterization of two bacterial β-glucanases from the recently created glycoside hydrolase family 157 (LaGH157 and BcGH157) and investigate their molecular basis for substrate hydrolysis. Structural analysis by X-ray crystallography revealed that GH157 enzymes belong to clan GH-A, possessing a (β/α)8-barrel fold catalytic domain, two β-sandwich accessory domains and two conserved catalytic glutamates residues, with relative positions compatible with a retaining mechanism of hydrolysis. Specificity screening and enzyme kinetics suggest that the enzymes prefer mixed-linkage glucans over β-1,3-glucans. Activity screening showed that both enzymes exhibit pH optimum at 6.5 and temperature optimum for LaGH157 and BcGH157 at 25 °C and 48 °C, respectively. Product analysis with HPAEC-PAD and LC-MS revealed that both enzymes are endo-1,3(4)-β-glucanases, capable of cleaving β-1,3 and β-1,4-linked glucoses, when preceded by a β-1,3 linkage. Moreover, BcGH157 needs a minimum of 4 subsites occupied for hydrolysis to occur, while LaGH157 only requires 3 subsites. Additionally, LaGH157 possesses exohydrolytic activity on β-1,3 and branching β-1,6 linkages. This unusual bifunctional endo-1,3(4)/exo-1,3–1,6 activity constitutes an expansion on our understanding of β-glucan deconstruction, with the potential to inspire future applications.

Henriques, JT, Carmo C, Marques A, Ferreira I, Baptista A.  2024.  Carbon threads supercapacitors for washable e-textile applications: configurations and electrochemical performance. ACS Applied Engineering Materials. 2:415-421.
do Carmo, CC, Brito M, Oliveira JP, Marques A, Ferreira I, Baptista A.  2024.  Cellulose Acetate and Polycaprolactone Fibre Coatings on Medical-Grade Metal Substrates for Controlled Drug Release. Polymers 2024. 16(14)
Rippel, R, Leitão F, Georgieva MK, Mamede M, Gomes CSB, Roma-Rodrigues C, Fernandes AR, Lourenço A, Ferreira LM, Branco PS.  2024.  Exploring The Synthesis of Aminal Guanidine-Based Molecules: Synthesis of Cernumidine and Analogues, and Survey of its Anti-inflammatory Activity. New J. Chem.. 48:5247–5257.
Panigrahi, S, Jana S, Calmeiro T, Fortunato E, Mendes MJ, Martins R.  2024.  MXene-Enhanced Nanoscale Photoconduction in Perovskite Solar Cells Revealed by Conductive Atomic Force Microscopy. ACS Applied Materials & Interfaces . 16(1):1930-1940.
Pinheiro, L, Freitas M, Branco PS.  2024.  Phosphate-Containing Glycolipids: A Review on Synthesis and Bioactivity. ChemMedChem. 19( ):e202400315.
Fernandes, IS, Antunes D, Martins R, Mendes MJ, Reis-Machado AS.  2024.  Solar fuels design: Porous cathodes modeling for electrochemical carbon dioxide reduction in aqueous electrolytes. Helyon. 10(4)
loading