Export 1422 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Rafique, A, Moniz M, Carmo J, Marques A, Ferreira I, Baptista A.  2023.  Exfoliated carbon yarn structure for highly stable flexible supercapacitors electrodes in simulated sweat solutions, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Rafique, A, Sequeira I, Bento AS, Moniz M, Carmo J, Oliveira E, Oliveira JP, Marques A, Ferreira I, Baptista A.  2023.  A facile blow spinning technique for green cellulose acetate/polystyrene composite separator for flexible energy storage devices, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Carmo, J, Moniz M, Rafique A, Ferreira I, Baptista A.  2023.  Green cellulose-based polymer electrolyte suitable for e-Textiles, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Rafique, A, Carmo J, Marques A, Ferreira I, Baptista A.  2023.  PEDOT:PSS Electrospray Functionalization of Carbon Yarns for Integration in Flexible Fibre-Shaped Supercapacitors, 3-6 April. XXI Congresso da Sociedade Portuguesa de Materiais and XII International Symposium on Materials. , Guimarães
Silva, JM, Cerofolini L, Carvalho AL, Ravera E, Fragai M, Parigi G, Macedo AL, Geraldes CFGC, Luchinat C.  2023.  Elucidating the concentration-dependent effects of thiocyanate binding to carbonic anhydrase, 2023. 244:112222. AbstractWebsite

Many proteins naturally carry metal centers, with a large share of them being in the active sites of several enzymes. Paramagnetic effects are a powerful source of structural information and, therefore, if the native metal is paramagnetic, or it can be functionally substituted with a paramagnetic one, paramagnetic effects can be used to study the metal sites, as well as the overall structure of the protein. One notable example is cobalt(II) substitution for zinc(II) in carbonic anhydrase. In this manuscript we investigate the effects of sodium thiocyanate on the chemical environment of the metal ion of the human carbonic anhydrase II. The electron paramagnetic resonance (EPR) titration of the cobalt(II) protein with thiocyanate shows that the EPR spectrum changes from A-type to C-type on passing from 1:1 to 1:1000-fold ligand excess. This indicates the occurrence of a change in the electronic structure, which may reflect a sizable change in the metal coordination environment in turn caused by a modification of the frozen solvent glass. However, paramagnetic nuclear magnetic resonance (NMR) data indicate that the metal coordination cage remains unperturbed even in 1:1000-fold ligand excess. This result proves that the C-type EPR spectrum observed at large ligand concentration should be ascribed to the low temperature at which EPR measurements are performed, which impacts on the structure of the protein when it is destabilized by a high concentration of a chaotropic agent.

Duarte, M, Alves VD, Correia M, Caseiro C, Ferreira LMA, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2023.  Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies, 2023. 224:55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

Baptista, A, Rafique A, Moniz M, Sequeira I, Carmo J, Ferreira I.  2023.  Cellulose-based supercapacitors, 11-12 May. 1st Iberian Symposium on Functional Organic Polymers. , Aveiro, Portugal
Veiga, H, Jousselin A, Schaeper S, Marques LB, Reed P, Saraiva BM, Wilton J, Filipe SR, Pinho MG.  2023.  Cell division protein FtsK coordinates bacterial chromosome segregation and daughter cell separation. EMBO J. 42:e112140.
Moniz, M, Rafique A, Marques A, Ferreira I, Baptista A, Carmo J, Oliveira JP.  2023.  Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors. ACS Applied Materials & Interfaces 2023. 15
Rafique, A, Sequeira I, Bento AS, Moniz M, Carmo J, Oliveira E, Oliveira JP, Marques A, Ferreira I.  2023.  A facile blow spinning technique for green cellulose acetate/polystyrene composite separator for flexible energy storage devices. Chemical Engineering Journal. 464(142515)
Lago, B, Brito M, Almeida CMM, Ferreira I, Baptista A.  2023.  Functionalisation of Electrospun Cellulose Acetate Membranes with PEDOT and PPy for Electronic Controlled Drug Release. Nanomaterials 2023. 13
Rafique, A, Ferreira I, G.Abbas, Baptista A.  2023.  Recent Advances and Challenges Towards Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Letters . 15
Silva, MA, Fernandes AP, Turner DL, Salgueiro CA.  2023.  A Biochemical Deconstruction-Based Strategy to Assist the Characterization of Bacterial Electric Conductive Filaments. International Journal of Molecular Sciences. 24, Number 8 AbstractWebsite

Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 ( 42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C ( 11 kDa/three hemes) and D ( 10 kDa/three hemes), as well as for bi-domain CD ( 21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.

Oliveira, {BB }, Costa B, Morão B, Faias S, Veigas B, Pereira {LP}, Albuquerque C, Maio R, Cravo M, Fernandes {AR}, Baptista {PV}.  2023.  Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples. Analytical and Bioanalytical Chemistry. 415:2849–2863., Number 14: Springer Abstract

The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor’s temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes. Graphical Abstract: [Figure not available: see fulltext.]

Valente, R, Cordeiro S, Luz A, Rodrigues {CR}, Baptista {PV}, Fernandes {AR}.  2023.  Doxorubicin-sensitive and -resistant colorectal cancer spheroid models: assessing tumor microenvironment features for therapeutic modulation. Frontiers in Cell and Developmental Biology. 11: Frontiers Media Abstract

Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.

Fernandes, TM, Silva MA, Morgado L, Salgueiro CA.  2023.  Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. Journal of Biological Chemistry. :105167. AbstractWebsite

Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the extracellular environment, freely diffusing cytochromes or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons, while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.

Coelho, {BJ }, Neto {JP }, Sieira B, Moura {AT }, Fortunato E, Martins R, Baptista {PV}, Igreja R, Águas H.  2023.  Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization. Sensors. 23, Number 10: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF–DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF–DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.

2022
Twilley, D, Thipe {VC }, Kishore N, Bloebaum P, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Selepe {MA }, Langhansova L, Katti K, Lall N.  2022.  Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis, nov. Pharmaceuticals. 15, Number 12: Molecular Diversity Preservation International (MDPI) Abstract

Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.

Lenis-Rojas, {OA}, Roma-Rodrigues C, Carvalho B, Cabezas-Sainz P, {Fernández Vila} S, Sánchez L, Baptista {PV}, Fernandes {AR}, Royo B.  2022.  In Vitro and In Vivo Biological Activity of Ruthenium 1,10-Phenanthroline-5,6-dione Arene Complexes, nov. International Journal of Molecular Sciences. 23, Number 21: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Ruthenium(II) arene complexes exhibit promising chemotherapeutic properties. In this study, the effect of the counter anion in Ru(II) complexes was evaluated by analyzing the biological effect of two Ru(II) p-cymene derivatives with the 1,10-phenanthroline-5,6-dione ligand of general-formula [(η6-arene)Ru(L)Cl][X] X = CF3SO3 (JHOR10) and PF6 (JHOR11). The biological activity of JHOR10 and JHOR11 was examined in the ovarian carcinoma cell line A2780, colorectal carcinoma cell line HCT116, doxorubicin-resistant HCT116 (HCT116-Dox) and in normal human dermal fibroblasts. Both complexes JHOR10 and JHOR11 displayed an antiproliferative effect on A2780 and HCT116 cell lines, and low cytotoxicity in fibroblasts. Interestingly, JHOR11 also showed antiproliferative activity in the HCT116-Dox cancer cell line, while JHOR10 was inactive. Studies in A2780 cells showed that JHOR11 induced the production of reactive oxygen species (ROS) that trigger autophagy and cellular senescence, but no apoptosis induction. Further analysis showed that JHOR11 presented no tumorigenicity, with no effect in the cellular mobility, as evaluated by thye wound scratch assay, and no anti- or pro-angiogenic effect, as evaluated by the ex-ovo chorioallantoic membrane (CAM) assay. Importantly, JHOR11 presented no toxicity in chicken and zebrafish embryos and reduced in vivo the proliferation of HCT116 injected into zebrafish embryos. These results show that these are suitable complexes for clinical applications with improved tumor cell cytotoxicity and low toxicity, and that counter-anion alteration might be a viable clinical strategy for improving chemotherapy outcomes in multidrug-resistant (MDR) tumors.

Palma, SICJ, Frazao J, Alves R, Costa HMA, Alves C, Gamboa H, Silveira M, Roque ACA.  2022.  Learning to see VOCs with Liquid Crystal Droplets, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–4.: IEEE AbstractPDFWebsite

In hybrid gels with immobilized liquid crystal
(LC) droplets, fast and unique optical texture variations are
generated when distinct volatile organic compounds (VOCs)
interact with the LC and disturb its molecular order. The
optical texture variations can be observed under a polarized
optical microscope or transduced into a signal representing the
variations of light transmitted through the LC. We show how
hybrid gels can accurately identify 11 distinct VOCs by using
deep learning to analyze optical texture variations of individual
droplets (0.93 average F1-score) and by using machine learning
to analyze 1D optical signals from multiple droplets in hybrid
gels (0.88 average F1-score)

Coelho, {BJ}, Veigas B, Bettencourt L, Águas H, Fortunato E, Martins R, Baptista {PV}, Igreja R.  2022.  Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker, mar. Biosensors. 12, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

We introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and reagents on the DMF platform, resulting in the successful amplification of 90 pg of the target DNA (0.5 ng/µL) in less than one hour. Furthermore, we test the efficiency of an innovative mixing strategy in DMF by employing two mixing methodologies onto the DMF droplets—low frequency AC (alternating current) actuation as well as back-and-forth droplet motion—which allows for improved fluorescence readouts. Fluo-rophore bleaching effects are minimized through on-chip sample partitioning by DMF processes and sequential droplet irradiation. Finally, LAMP reactions require only 2 µL volume droplets, which represents a 10-fold volume reduction in comparison to benchtop LAMP.

Rodrigo, {AP }, Lopes {AC}, Pereira R, Anjo {SI }, Manadas B, Grosso {AR }, Baptista {PV}, Fernandes {AR}, Costa {PM }.  2022.  Endogenous Fluorescent Proteins in the Mucus of an Intertidal Polychaeta: Clues for Biotechnology, mar. Marine Drugs. 20, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue–greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.

Ferreira‐silva, M, Faria‐silva C, Carvalheiro {MC }, Simões S, Marinho S}{H, Marcelino P, Campos {MC}, Metselaar {JM }, Fernandes E, Baptista {PV}, Fernandes {AR}, Corvo L}{M.  2022.  Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment, jan. Pharmaceutics. 14, Number 1: MDPI AG Abstract

Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.

Alves-Barroco, C, Rivas-García L, Fernandes {AR}, Baptista {PV}.  2022.  Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles, feb. Frontiers in Microbiology. 13:1–15.: Frontiers Research Foundation Abstract

Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.

Lenis-Rojas, {OA}, Carvalho B, Cabral R, Silva M, Friães S, Roma-Rodrigues C, Meireles {MSH }, Gomes {CSB}, Fernández {JAA }, Vila {SF }, Rubiolo {JA }, Sanchez L, Baptista {PV}, Fernandes {AR}, Royo B.  2022.  Manganese(I) tricarbonyl complexes as potential anticancer agents, feb. JBIC Journal of Biological Inorganic Chemistry. 27:49–64., Number 1: Springer Abstract

The antiproliferative activity of [Mn(CO)3(N^N)Br] (N^N = phendione 1, bipy 3) and of the two newly synthesized Mn complexes [Mn(CO)3(acridine)(phendione)]OTf (2) and [Mn(CO)3(di-triazole)Br] (4) has been evaluated by MTS against three tumor cell lines A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), HCT116doxR (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The antiproliferative assay showed a dose-dependent effect higher in complex 1 and 2 with a selectivity toward ovarian carcinoma cell line 21 times higher than in human fibroblasts. Exposure of A2780 cells to IC50 concentrations of complex 1 and 2 led to an increase of reactive oxygen species that led to the activation of cell death mechanisms, namely via intrinsic apoptosis for 2 and autophagy and extrinsic apoptosis for 1. Both complexes do not target DNA or interfere with cell cycle progression but are able to potentiate cell migration and neovascularization (for 2) an indicative that their application might be directed for initial tumor stages to avoid tumor invasion and metastization and opening a new avenue for complex 2 application in regenerative medicine. Interestingly, both complexes do not show toxicity in both in vivo models (CAM and zebrafish). Graphical abstract: [Figure not available: see fulltext.]

loading