Export 1622 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Cruz, J, Silva H, Lopes J, Rocha J, Jesus AP.  2018.  Very high fluence nitrogen implantations in metals studied by Rutherford Backscattering Spectrometry. :169-173.: Surface and Coatings Technology, 355surfcoattechnology-355-2018.pdf
dos Santos, LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Corvo M, Almeida P, Einloft S.  2018.  Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polymer Bulletin. :1–16.: Springer Berlin Heidelberg AbstractWebsite

Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.

Pinto, ACM, Sanjad TABC, Angélica RS, da Costa ML, Paiva RS, Palomar T.  2018.  19th century stained-glass windows from Belém do Pará (Brazil): Analytical characterisation and pathology. Boletín de la Sociedad Española de Cerámica y Vidrio. 57:133-141., Number 4 AbstractWebsite

The aim of this work was to determine the physico-chemical characteristics of the stained-glass windows into the 19th century of two mausoleums located in the city of Belém do Pará (Brazil), and to evaluate their state of conservation. The glass chemical composition was determined by WXRF and SEM/EDS. The samples’ morphology and the microorganisms’ identification were carried out by optical microscopy. The results indicated that the samples were soda-lime silicate glass, with approximately 70wt. % of SiO2, which contributed to the resistance of the stained glass to the weathering. The concentration of Na2O was normally twice the K2O, which contrasts with the composition of other panels produced during the same period, as reported in the literature. The biofilm is composed by cyanobacteria and rotifers. Overall, the panels analysed were in a good state of conservation, despite their exposure to tropical climate conditions for more than a century with no preventive measures whatsoever. Resumen El objetivo del presente trabajo fue determinar las características físico-químicas de las vidrieras del siglo XIX correspondientes a dos mausoleos ubicados en la ciudad de Belém do Pará (Brasil) para evaluar su estado de conservación. La composición química del vidrio fue determinada por WXRF y SEM/EDS. La morfología de las muestras y la identificación de los microorganismos fueron realizadas por microscopia óptica. Los resultados indicaron que las muestras eran vidrios de silicato sódico-cálcico, con aproximadamente el 70% en peso de SiO2, lo que aumentó la resistencia a la corrosión de los vidrios de estas vidrieras. La concentración de Na2O fue normalmente el doble que de K2O, lo que contrasta con la composición de otros paneles producidos durante el mismo período, de acuerdo con la literatura. El biofilm presentó cianobacterias y rotíferas. En general, los paneles analizados presentaban un buen estado de conservación, a pesar de su exposición a las condiciones climáticas tropicales durante más de un siglo, sin las medidas de conservación preventivas.

Pawlowski, S, Nayak N, Meireles M, Portugal CAM, Velizarov S, Crespo JG.  2018.  CFD modelling of flow patterns, tortuosity and residence time distribution in monolithic porous columns reconstructed from X-ray tomography data. Chemical Engineering Journal. 350:757-766. AbstractWebsite

Highly porous monolithic alumina columns find a wide variety of applications, including in chromatography, due to increased surface area and good accessibility to the ligands and reduced diffusional hindrances. Several modelling approaches have been applied to describe experimentally observed flow behaviour in such materials, which morphology plays a key role in determining their hydrodynamic and mass transfer properties. In this work, a direct computational fluid dynamics (CFD) modelling approach is proposed to simulate flow behaviour in monolithic porous columns. The morphological structure of a fabricated alumina monolith was first reconstructed using 3D X-ray tomography data and, subsequently, OpenFOAM, an open-source CFD tool, was used to simulate the essential parameters for monoliths’ performance characterisation and optimisation, i.e. velocity and pressure fields, fluid streamlines, shear stress and residence time distribution (RTD). Moreover, the tortuosity of the monolith was estimated by a novel method, using the computed streamlines, and its value (∼1.1) was found to be in the same range of the results obtained by known experimental, analytical and numerical equations. Besides, it was observed (for the case of the monolith studied) that fluid transport was dominated by flow heterogeneities and advection, while the shear stress at pore mouths was significantly higher than in other regions. The proposed modelling approach, with expected high potential for designing target materials, was successfully validated by an experimentally obtained residence time distribution (RTD).

Gomes, AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL.  2018.  The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. International Journal of Molecular Sciences. 19, Number 4}, ARTICLE NUMBER = {1184 AbstractWebsite

The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.

Rebocho, S, Cordas CM, Viveiros R, Casimiro T.  2018.  Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A. The Journal of Supercritical Fluids. 135:98-104. AbstractWebsite
n/a
Marcelo, G, Ferreira IC, Viveiros R, Casimiro T.  2018.  Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery. International Journal of Pharmaceutics. 542:125-131., Number 1 AbstractWebsite
n/a
Palomar, T, Redol P, Cruz Almeida I, Pereira da Silva E, Vilarigues M.  2018.  The Influence of Environment in the Alteration of the Stained-Glass Windows in Portuguese Monuments. Heritage. 1:365–376., Number 2 AbstractWebsite

This work presents the results of the exposure of soda-lime, potash-lime and mixed-alkali silicate glasses during ten and twenty months in different Portuguese monuments with historical stained-glass windows to characterize the influence of local environmental conditions. The glass samples were exposed in the Monastery of Batalha (Batalha), the Monastery of Jerónimos (Lisbon), and the Cathedral of Évora (Évora). A set of analytical techniques to assess the physicochemical effects were used, including optical microscopy and Fourier transform infrared spectroscopy. All the samples presented crystalline deposits on their surface; however, their quantity and nature depended on the atmospheric conditions during the days before the collection. Potash-lime silicate glass was the most altered glass in comparison with soda-lime and mixed-alkali silicate glasses. The samples from the Cathedral of Évora showed a high content of dust and salts on their surface but without severe chemical pathologies; however, those samples exposed in the Monastery of Jerónimos and the Monastery of Batalha presented alteration layers due to a high humidity environment.

Canejo, JP, Fernandes SN, Godinho MH, Pieranski P.  2018.  Liquid Fibres and Their Networks from Cellulose-Based Liquid Crystalline Solutions. Liquid Crystals. 45:1987-1995., Number 13-15 Abstract
n/a
Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.  2018.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8 AbstractWebsite

The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.

Kumar, K, Correia M, Pires VR, Dhillon A, Sharma K, Rajulapati V, Fontes CMGA, Carvalho AL, Goyal A.  2018.  Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules. :-. AbstractWebsite

Abstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of  82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.

Tufa, RA, Pawlowski S, Veerman J, Bouzek K, Fontananova E, di Profio G, Velizarov S, Goulão Crespo J, Nijmeijer K, Curcio E.  2018.  Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied Energy. 225:290-331. AbstractWebsite

Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of different salinity. This work presents a critical review of the most significant achievements in RED, focusing on membrane development, stack design, fluid dynamics, process optimization, fouling and potential applications. Although RED technology is mainly investigated for energy generation from river water/seawater, the opportunities for the use of concentrated brine are considered as well, driven by benefits in terms of higher power density and mitigation of adverse environmental effects related to brine disposal. Interesting extensions of the applicability of RED for sustainable production of water and hydrogen when complemented by reverse osmosis, membrane distillation, bio-electrochemical systems and water electrolysis technologies are also discussed, along with the possibility to use it as an energy storage device. The main hurdles to market implementation, predominantly related to unavailability of high performance, stable and low-cost membrane materials, are outlined. A techno-economic analysis based on the available literature data is also performed and critical research directions to facilitate commercialization of RED are identified.

Larsen, SR, Hansteen M, Pacakova B, Theodor K, Arnold T, Rennie AR, Helgesen G, Knudsen KD, Bordallo HN, Fossum JO, Cavalcanti LP.  2018.  Sample Cell for Studying Liquid Interfaces with an {\emph{in Situ}} Electric Field Using {{X}}-Ray Reflectivity and Application to Clay Particles at Oil–{}Oil Interfaces. Journal of Synchrotron Radiation. 25:915-917., Number 3 Abstract
n/a
Ribeiro, DO, Pinheiro BA, Carvalho AL, Palma AS.  2018.  Targeting protein-carbohydrate interactions in plant cell-wall biodegradation: the power of carbohydrate microarrays. Carbohydrate Chemistry: Chemical and Biological Approaches Volume 43. 43:159-176.: The Royal Society of Chemistry Abstract

The plant cell-wall is constituted by structurally diverse polysaccharides. The biodegradation of these is a crucial process for life sustainability. Cellulolytic microorganisms are highly efficient in this process by assembling modular architectures of carbohydrate-active enzymes with appended non-catalytic carbohydrate-binding modules (CBMs). Carbohydrate microarrays offer high-throughput and sensitive tools for uncovering carbohydrate-binding specificities of CBMs{,} which is pivotal to understand the function of these modules in polysaccharide biodegradation mechanisms. Features of this technology will be here briefly reviewed with highlights of microarray approaches to study plant-carbohydrates and CBM-carbohydrate interactions{,} along with an overview of plant polysaccharides and microorganisms strategies for their recognition.

Araújo, A, Mendes MJ, Mateus T, Costa J, Nunes D, Fortunato E, Águas H, Martins R.  2018.  Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells. Solar Energy. 174:786-792. AbstractWebsite

A fast method is presented to fabricate plasmonic light trapping structures in just ten minutes (>5 × faster than the present state of art), with excellent light scattering properties. The structures are composed of silver nanoparticles (Ag NPs) deposited by thermal evaporation and self-assembled using a rapid thermal annealing (RTA) system. The effect of the RTA heating rate on the NPs production reveals to be crucial to the decrease of the annealing process. The Ag NPs are integrated in thin film silicon solar cells to form a plasmonic back reflector (PBR) that causes a diffused light reflectivity in the near-infrared (600–1100 nm wavelength region). In this configuration the thicknesses of the AZO spacer/passivating layers between NPs and rear mirror, and between NPs and silicon layer, play critical roles in the near-field coupling of the reflected light towards the solar cell absorber, which is investigated in this work. The best spacer thicknesses were found to be 100 and 60 nm, respectively, for Ag NPs with preferential sizes of about 200 nm. The microcrystalline silicon (μc-Si:H) solar cells deposited on such improved PBR demonstrate an overall 11% improvement on device efficiency, corresponding to a photocurrent of 24.4 mA/cm2 and an efficiency of 6.78%, against 21.79 mA/cm2 and 6.12%, respectively, obtained on flat structures without NPs.

2017
Raposo, {LR }, Roma-Rodrigues C, Faísca P, Alves M, Henriques J, Carvalheiro {MC }, Corvo {ML }, Baptista {PV }, Pombeiro {AJ }, Fernandes {AR }.  2017.  Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT, sep. Veterinary and Comparative Oncology. 15:952–967., Number 3: Wiley-Blackwell Abstract

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Fonseca, DA, Guerra AF, Carvalho F, Fernandes E, Ferreira LM, Branco PS, Antunes PE, Antunes MJ, Cotrim MD.  2017.  Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro, OCT. CARDIOVASCULAR TOXICOLOGY. 17:405-416., Number 4 Abstract
n/a
Bernardo, MMS, Madeira CAC, dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM.  2017.  Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars, Oct. Environmental Science and Pollution Research. 24:22698–22708., Number 28 AbstractWebsite

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5–81.5{%}), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g−1) and higher micropore content (V micro = 0.05 cm3 g−1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g−1) and caffeine (8.0 mg g−1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.

Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Coelho, {BJ}, Veigas B, Águas H, Fortunato E, Martins R, Baptista {PV}, Igreja R.  2017.  A digital microfluidics platform for loop-mediated isothermal amplification detection, nov. Sensors. 17, Number 11: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Trindade, AC, Almeida APC, Canejo JP, Patrício P, Pieranski P, Godinho MH.  2017.  Elastomeric Patterns Probed by a Nematic Liquid Crystal, nov. Molecular Crystals and Liquid Crystals. 657:136-146., Number 1 Abstract
n/a
Veigas, B, Pinto J, Vinhas R, Calmeiro T, Martins R, Fortunato E, Baptista {PV}.  2017.  Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform, may. Biosensors & Bioelectronics. 91:788–795.: Elsevier Abstract

Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Feio-Azevedo, R, Costa VM, Ferreira LM, Branco PS, Pereira FC, Bastos ML, Carvalho E, Capela JP.  2017.  Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells, MAR 5. TOXICOLOGY LETTERS. 269:65-76. Abstract
n/a
Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  Developments in the Reactivity of 2-Methylimidazolium Salts, JUN 16. JOURNAL OF ORGANIC CHEMISTRY. 82:6232-6241., Number 12 Abstract
n/a