Larguinho, M, Correia D, Diniz M, Baptista P.
2014.
Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels, jul. Journal Of Nanoparticle Research. 16, Number 8: Kluwer Academic Publishers
AbstractThis work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.
Fortunato, {EMC}, Águas {HMB}, Busani {TL}, de Martins {RFP}, Baptista {PMRV}.
2014.
Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length, jan. RSC Advances. 4:56013–56025., Number 99: RSC - Royal Society of Chemistry
AbstractThis paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1-117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number > number of rhombi > contraction width > interobstacles distance. The pressure drop measured after three rhombi depends mainly on Re and interobstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 mu m and inter-obstacles distance of 93 mu m, while for the high Re regime a contraction width of 400 v and inter-obstacle distance of 121 mu m are more appropriate. These mixers enabled 80% mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 x 10(4) Pa at Re = 117.6, with a mixer length of 2.5 mu m. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.
Veigas, B, Branquinho R, {Vaz Pinto} J, Wojcik {PJ}, de Martins {RFP}, Fortunato {EMC}, Baptista {PMRV}.
2014.
Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification, feb. Biosensors & Bioelectronics. 52:50–55.: Elsevier
AbstractField-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the need of standard or real-time PCR amplification procedures. The present work focuses on the development of a tantalum pentoxide (Ta2O5) based sensor for the real-time label free detection of DNA amplification via loop mediated isothermal amplification (LAMP) allowing for quantitative analysis of the cMYC proto-oncogene. The strategy based on the field effect sensor was tested within a range of 1 x 10(8)-10(11) copies of target DNA, and a linear relationship between the log copy number of the initial template DNA and threshold time was observed allowing for a semi-quantitative analysis of DNA template. The concept offers many of the advantages of isothermal quantitative real-time DNA amplification in a label free approach and may pave the way to point-of-care quantitative molecular analysis focused on ease of use and low cost.
Barbosa, DJ, Capela JP, Silva R, Vilas-Boas V, Ferreira LM, Branco PS, Fernandes E, de Bastos ML, Carvalho F.
2014.
The mixture of ``ecstasy{''} and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations, FEB. ARCHIVES OF TOXICOLOGY. 88:455-473., Number 2
Abstractn/a
Barbosa, DJ, Capela JP, Silva R, Ferreira LM, Branco PS, Fernandes E, Bastos ML, Carvalho F.
2014.
``Ecstasy{''}-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites, FEB. ARCHIVES OF TOXICOLOGY. 88:515-531., Number 2
Abstractn/a
Larguinho, M, Costa PM, c}alo Sousa G{\c, Diniz {MS }, Costa {MH}, Baptista P.
2014.
Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: Correlation with genotoxicity and metabolic alterations, dec. Journal of Applied Toxicology. 34:1293–1302., Number 12: John Wiley & Sons, Ltd.
AbstractAcrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.
Baptista, {PV}.
2014.
Nanodiagnostics: Leaving the research lab to enter the clinics?, dec Diagnosis. 1:305–309., Number 4: Walter De Gruyter
AbstractNanotechnology has provided a plethora of valuable tools that can be applied for the detection of biomolecules and analytes relevant for diagnosis purposes - nanodiagnostics. This surging new field of molecular diagnostics has been revolutionizing laboratory procedures and providing new ways to assess disease biomarkers with increased sensitivity. While most of the reported nanodiagnostics systems are proof-of-concepts that demonstrate their efficacy in the lab, several nanodiagnostics platforms have already matured to a level that open the way for effective translation to the clinics. Nanodiagnostics platforms (e.g., gold nanoparticles containing systems) have been remarkably useful for the development of molecular diagnosis strategies for DNA/RNA detection and characterization, including systems suitable for point-of-care. How near are nanodiagnostics to go from the bench to the bedside?
Veigas, B, Fernandes {AR}, Baptista P.
2014.
AuNPs for identification of molecular signatures of resistance, aug. Frontiers in Microbiology. 5: Frontiers Research Foundation
AbstractThe increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.
Conde, J, Larguinho M, Cordeiro A, Raposo {LR }, Costa {PM }, Santos S, Diniz {MS }, Fernandes {AR}, Baptista {PV}.
2014.
Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis, aug. Nanotoxicology. 8:521–532., Number 5: Informa Healthcare
AbstractAntisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2- Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.
João, C, Vasconcelos J, Silva JC, Borges JP.
2014.
An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering, 2014. Tissue Engineering Part B-Reviews. 20:437-454.
AbstractScaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.
Pina, AS, Batalha IL, Roque ACA.
2014.
Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods. (
Labrou, Nikolaos, Ed.).:147-168.: Springer
AbstractThe reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Soares, PIP, Ferreira I, Borges JP.
2014.
Application of Hyperthermia for Cancer Treatment: Recent Patents Review. Topics in Anti-Cancer Research, Vol. 3. (
Atta-ur-Rahman, Khurshid Zaman, Eds.).:342-383.: Bentham Science Publishers
AbstractCancer is one of the main causes of death in the world and its incidence increases every day. Current treatments are insufficient and present many breaches. Hyperthermia is an old concept and was early established as a cancer treatment option, mainly in superficial cancers. More recently, the concept of intracellular hyperthermia emerged wherein magnetic particles are concentrated at the tumor site and remotely heated using an applied magnetic field to achieve hyperthermic temperatures (42-45ºC). Many patents have been registered in this area since the year 2000. This chapter presents the most relevant information organized in two main categories according to the use or not of nanotechnology. The patents without nanotechnology were divided into the following subcategories: 1) external Radio-Frequency devices; 2) hyperthermic perfusion; 3) frequency enhancers; 4) applying heat to the target site using a catheter; and 5) injection of magnetic and ferroelectric particles. The patents with nanotechnology were divided into three subcategories: 1) hyperthermia devices; 2) nanoparticles; and 3) nanostructures. The use of magnetic nanoparticles is a very promising treatment approach since it may be used for diagnostic and treatment. Magnetic nanoparticle could be applied to detect and diagnose the tumor and to carry a pharmacological active drug to be delivered in the tumor site or apply hyperthermia through an external magnetic field.
Soares, PIP, Ferreira IMM, Borges JPMR.
2014.
Application of hyperthermia for cancer treatment: recent patents review. Topics in anti-cancer research. :342-383., USA: Bentham Science Publishers
AbstractCancer is one of the main causes of death in the world and its incidence increases every
day. Current treatments are insufficient and present many breaches. Hyperthermia is an old
concept and was early established as a cancer treatment option, mainly in superficial
cancers. More recently, the concept of intracellular hyperthermia emerged wherein magnetic
particles are concentrated at the tumor site and remotely heated using an applied magnetic
field to achieve hyperthermic temperatures (42-45ºC). Many patents have been registered in
this area since the year 2000. This chapter presents the most relevant information organized
in two main categories according to the use or not of nanotechnology.
Borges, JP, Canejo JP, Fernandes S, Brogueira P, Godinho MH.
2014.
Cellulose-Based Liquid Crystalline Composite Systems. Nanocellulose Polymer Nanocomposites: Fundamentals and Applications. (
Thakur, Vijay Kumar, Ed.).:215-235., Hoboken, NJ, USA: John Wiley & Sons, Inc.
Simone, Zanarini, Garino, Nadia, Nair, JIJEESH RAVI, Francia, Carlotta, Wojcik PJ, Luis, Elvira, Rodrigo, Martins, Bodoardo, Silvia, Penazzi N.
2014.
Contrast Enhancement in Polymeric Electrochromic Devices Encompassing Room Temperature Ionic Liquids. International Journal of ELECTROCHEMICAL SCIENCE. 9:1650-1662.
Madariaga, D, Martínez-Sáez N, Somovilla VJ, Coelho H, González JV, Castro-López J, Asensio JL, Jimenez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM.
2014.
Detection of Tumor-Associated Glycopeptides by Lectins: the Peptide Context Modulates Carbohydrate Recognition. ACS Chem. Biol.. 10:747-56.
AbstractTn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed
Soares, PIP, Alves A, Pereira L, Coutinho J, Ferreira I, Novo C, Borges JP.
2014.
Effects of surfactants on the magnetic properties of iron oxide colloids. Journal of Colloid and Interface Science. 419:46–51.
AbstractIron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation.
Taking this into account, in this study the influence of three different surfactants (oleic acid, sodium citrate and Triton X-100) each one with various concentrations in the colloidal solutions stability was analyzed by using a rapid and facile method, the variation in the optical absorbance along time.
The synthesized nanoparticles through chemical precipitation showed an average size of 9 nm and a narrow size distribution. X-ray diffraction pattern and Fourier Transform Infrared analysis confirmed the presence of pure magnetite. SQUID measurements showed superparamagnetic properties with a blocking temperature around 155 K. In addition it was observed that neither sodium citrate nor Triton X-100 influences the magnetic properties of the nanoparticles. On the other hand, oleic acid in a concentration of 64 mM decreases the saturation magnetization from 67 to 45 emu/g. Oleic acid exhibits a good performance as stabilizer of the iron oxide nanoparticles in an aqueous solution for 24 h, for concentrations that lead to the formation of the double layer.
Soares, PIP, Alves AMR, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JPMR.
2014.
Effects of surfactants on the magnetic properties of iron oxide colloids. J. Colloid Interface Sci.. 419:46-51.
AbstractIron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation.
Taking this into account, in this study the influence of three different surfactants (oleic acid, sodium citrate and Triton X-100) each one with various concentrations in the colloidal solutions stability was analyzed by using a rapid and facile method, the variation in the optical absorbance along time.
The synthesized nanoparticles through chemical precipitation showed an average size of 9 nm and a narrow size distribution. X-ray diffraction pattern and Fourier Transform Infrared analysis confirmed the presence of pure magnetite. SQUID measurements showed superparamagnetic properties with a blocking temperature around 155 K. In addition it was observed that neither sodium citrate nor Triton X-100 influences the magnetic properties of the nanoparticles. On the other hand, oleic acid in a concentration of 64 mM decreases the saturation magnetization from 67 to 45 emu/g. Oleic acid exhibits a good performance as stabilizer of the iron oxide nanoparticles in an aqueous solution for 24 h, for concentrations that lead to the formation of the double layer.