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The increasing levels of drug resistance are one of biggest threats to overcome microbial
infection.The ability to rapidly and accurately detect a given pathogen and its drug resistance
profile is essential for the appropriate treatment of patients and for preventing further
spread of drug-resistant strains. The predictive and informative value of these molecular
markers needs to be translated into robust surveillance tools that correlate to the target
and extent of resistance, monitor multiresistance and provide real time assessment at
point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in
clinical specimens are based on the detection of specific nucleotide sequences and/or
mutations within pre-selected biomarkers in the genome, indicative of the presence of
the pathogen and/or associated with drug resistance. DNA and/or RNA based assays
offer advantages over phenotypic assays, such as specificity and time from collection to
result. Nanotechnology has provided new and robust tools for the detection of pathogens
and more crucially to the fast and sensitive characterisation of molecular signatures
of drug resistance. Amongst the plethora of nanotechnology based approaches, gold
nanoparticles have prompt for the development of new strategies and platforms capable
to provide valuable data at point-of-need with increased versatility but reduced costs. Gold
nanoparticles, due to their unique spectral, optical and electrochemical properties, are one
of the most widely used nanotechnology systems for molecular diagnostics.This review will
focus on the use of gold nanoparticles for screening molecular signatures of drug resistance
that have been reported thus far, and provide a critical evaluation of current and future
developments of these technologies assisting pathogen identification and characterisation.
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THE CASE FOR MOLECULAR CHARACTERISATION OF
PATHOGENS
Rapid and specific detection and characterisation of agents
involved in infection is of paramount importance to deliver suc-
cessful treatment. Traditional methodologies for identification
of pathogens, though of extreme relevance, may be laborious
and time-consuming, which may lead to delayed definitive diag-
noses and treatment to the patient (Mothershed and Whitney,
2005). Several innovative approaches have already made their
way to the clinics and provide for increased sensitivity and speci-
ficity pathogen detection and characterisation and doing so in
a fast multiplexed (Hauck et al., 2010). Additionally, the litera-
ture is full of new concepts for nucleic acid-based tests (NATs)
for bacteria detection that may still make their way to the clinical
setting.

Nucleic acid-based tests can be used to detect the presence
of organisms directly in clinical specimens without the need
of culture. In addition, hospital infection control and epi-
demiology programs are benefiting from the use of NATs for
detecting antibiotic resistance genes and for subtyping bacteria.

The first NAT cleared for use by the Food and Drug Admin-
istration (FDA) was the Gen-Probe PACE test (1988) that used
nucleic acid hybridisation to detect Chlamydia sp. and Gonococci.
Introduction of PCR allowed the development of a plethora of
diagnostic approaches for clinically relevant bacterial pathogens
(Mothershed and Whitney, 2005). One such example, already
in the market, is the line probe assay (LiPA) from Innogenet-
ics (Gent, Belgium). Innogenetics produces several line probe
NATs for bacterial detection including ones for Mycobacterium
tuberculosis complex and Mycobacterium spp., rpoB gene muta-
tions conferring rifampicin resistance, and Treponema pallidum
antibodies. The INNO-LiPA Rif. TB test detects the M. tubercu-
losis complex (MTBC), specifically five genotypes corresponding
to sensitivity to rifampicin and four resistant genotypes. While
there is great potential of molecular assays to increase the speed
and accuracy of bacterial identification in the clinical labora-
tory, limitations of NATs must be considered. For example,
sample preparation and DNA purification from complex media
constitutes a serious drawback for these assays since quantity
and quality of template/target is one of the main aspects that
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affect performance. Also, costs associated to specialized training
for personal and sophisticated equipment pose a serious obsta-
cle for the widespread implementation of NATs as front line
diagnostics.

NANOTECHNOLOGY FOR MOLECULAR DIAGNOSTICS
(NANODIAGNOSTICS)
In the last decade, the use of nanomaterials for biosensing
has been having a great impact and presents a great oppor-
tunity to develop fast, accurate and cost effective approaches
for detection of pathogenic infectious agents. Nanodiagnos-
tics have focused on the design of systems where researchers
manipulate the properties of nanostructures for diagnostics pur-
poses. Compared to standard methodologies, nanotechnology
based approaches have several important practical advantages,
including: enhanced surface reactivity, quantum confinement
effects, enhanced electrical conductivity and enhanced magnetic
properties, which enable nucleic acid detection to be extremely
sensitive (Kaittanis et al., 2010; Chi et al., 2012; Shinde et al.,
2012; Hartman et al., 2013). It should be mentioned that several
systems incorporating small peptide and/or protein recognition
moieties have also been reported, but fall outside the scope
of the present review (for additional insights please refer to
Larguinho and Baptista, 2012).

Despite the wide range of nanoscale systems for biomolec-
ular assays (Azzazy et al., 2006; Jain, 2007; Das et al., 2010),
the most promising approaches are based on nanoparticles
(NPs; Rosi and Mirkin, 2005; Jain, 2007; Baptista et al., 2008;
Branton et al., 2008; Tallury et al., 2009; Jung et al., 2010; Chi
et al., 2012; Wang et al., 2013; Lin et al., 2014). In particu-
lar, the unique properties of noble metal NPs, such as gold,
have allowed for the development of new biosensing plat-
forms, offering greater sensitivity than conventional reporter
molecules (Azzazy and Mansour, 2009). Surface chemistries of
AuNPs can be easily tuned and functionalised with organic thiol
molecules or thiol-containing polymers, leading to the forma-
tion of relatively strong covalent bonds (Kaittanis et al., 2010).
For example, gold nanoparticles (AuNPs) conjugated with spe-
cific oligonucleotides can sense complementary DNA strands
in a nearly one-on-one interaction between the NP and the
target DNA molecule (Baptista et al., 2005; Jain, 2005; Azzazy
et al., 2006, 2007; Veigas et al., 2012a). AuNPs’ simplicity and
versatility have attracted considerable attention towards the devel-
opment of molecular diagnostic applications and are becom-
ing a critical component of nanotechnology-based detection of
pathogens (Liu, 2006). AuNPs support multiple detection plat-
forms, i.e., a target analyte can be sensed through more than
one detection methodology, such as spectroscopic, colorimet-
ric, fluorimetric and electrochemical methods (Jung et al., 2010;
Upadhyayula, 2012).

Gold nanoparticles have unique optical properties associated
with a well-defined surface plasmon resonance (SPR) band in
the visible region of the spectrum (Halfpenny and Wright, 2010),
strongly correlated to composition, shape and inter-particle dis-
tance (Johnson et al., 2007). For example, AuNP aggregation
leads to a pronounced color transition from red to blue due
to plasmon coupling between NPs (Jain, 2007). Consequently,

most AuNPs based methods rely on these colorimetric changes
of the colloidal solution upon aggregation derived from changes
to the media dielectric and/or due to recognition of a spe-
cific target. These detection strategies typically depend on the
interaction between nanostructure-bound oligonucleotides and
the target molecule mediated by a recognition element, which,
for DNA/RNA assays, is an oligonucleotide sequence – gold
nanoprobe (Au-nanoprobe). A specific complementary target
may hybridize to the Au-nanoprobes and promote inter-particle
cross-linking aggregation (e.g., using two Au-nanoprobes each
functionalised with one half of a contiguous target recognition
sequence) or stabilize nanoprobes against changes to the media
dielectric (e.g., pH, ionic strength). In the latter, hybridisation of
Au-nanoprobes to the target sequence will prevent the non-cross-
linking aggregation induced by increasing ionic strength (Figure 1;
Sato et al., 2003; Baptista et al., 2005). Thus, modulation of AuNP
or Au-nanoprobe inter-particle distance allows control over their
corresponding aggregation and dispersion levels providing visual
detection for a wide range of biological entities (Hauck et al., 2010;
Ngo et al., 2011).

NANODIAGNOSTICS FOR PATHOGENS
Identification of pathogens based on specific target sequences
has become the corner-stone of molecular based approaches to
discriminate between organisms and characterize particular vari-
ations at the genomic level that provide unique nucleic acid
signatures suitable for diagnostics. This trend has had a new
surge with the development of numerous nanoparticle-based
approaches designed to identify those pathogen signatures with
extra sensitivity and faster than ever before (Costa et al., 2010; Kait-
tanis et al., 2010; Chi et al., 2012; Veigas et al., 2012a). In fact, the
increase in sensitivity without loss of selectivity and specificity has
promoted nanodiagnostics in the field of pathogen characterisa-
tion. Also, due to the minute dimensions of the signal transduction
label (e.g., AuNPs), these systems show a high degree of minia-
turization that makes them suitable for use at point-of-care or
point-of-need.

The first proof-of-concept for nanodiagnostics using AuNPs
was introduced by Mirkin et al. (1996) who successfully demon-
strated that 13 nm AuNPs functionalized with a specific oligonu-
cleotide sequence selectively assembled in the presence of a
complementary target DNA. The development of this proof-of-
concept led to the development of the first Au-nanoprobe based
pathogen diagnostic system, allowing the detection of anthrax via
a specific lethal factor DNA sequence (Bailey et al., 2003). This
approach was further explored in a multitude of targets and sam-
ples (for further insights see Kaittanis et al., 2010; Veigas et al.,
2012a and references therein).

Following a similar technological approach, Baptista et al.
(2006) developed a rapid and relatively low cost method for
DNA detection and generated the first application of AuNPs
for the molecular diagnostics of Mycobacterium tuberculosis
(Mtb). The method consists in differential stabilization of Au-
nanoprobes in presence of DNA targets following salt induced
aggregation: presence of a complementary target prevents
nanoprobe aggregation and the solution remains red; whereas
non-complementary/mismatched targets do not prevent gold
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FIGURE 1 | AuNP detection schemes for characterization of antibiotic

resistant pathogen strains. Detection strategies based on the observable
colorimetric alteration of Au-nanoprobes solutions. The surface plasmon band
(SPR) of gold nanoparticles depends on inter-particle distance, size and
aggregation. Aggregation of AuNPs results in a red-shift of the SPR with
concomitant change of color of the solution, from red to blue.
(A) Cross-Linking method relies on the hybridization of two populations of
Au-nanoprobes that bind to adjacent regions of a nucleic acid target.
Aggregation mediated by DNA hybridization results in a visual change of color
from red to blue. (B) Non-cross-linking method relies on the differential
aggregation profiles of Au-nanoprobes induced by increased ionic strength in

the presence or absence of the specific target sequence: presence of the
complementary target sequence to that of the probe prevents aggregation
and the solution remains red, whereas absence of a specific target sequence
leads to extensive aggregation after salt addition and the solution turns blue.
(C) Sandwich based assay involves an immobilized capture probe, target DNA
and one Au-nanoprobe reporter. Half of the target DNA hybridizes to the
immobilized DNA and the other half to the reporter Au-nanoprobe. This
strategy allows a simple to preform surface wash, thus increasing the signal
to noise ratio and consequently the sensitivity. This method enables a higher
sensitivity when coupled to an improved hybridization method that facilitates
probe-target binding in a homogeneous format.
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nanoprobe aggregation, resulting in a visible change of color
from red to blue. The methodology was tested in clinical sam-
ples demonstrating high efficiency with results comparable to
those attained via commercial molecular tuberculosis (TB) diag-
nostics test, such as INNO-LiPA Rif. TB (Veigas et al., 2012a).
Similar approaches have been used by Liandris et al. (2009) who
developed a non-cross-linking approach for the detection of TB
without the need of target amplification. Following a cross-linking
approach, Soo et al. (2009) designed a set of gold nanoprobes
to specifically hybridize with target DNA from Mtb strains. This
methodology was evaluated by directly and simultaneously detect-
ing M. tuberculosis complex (MTBC) and Mtb in 600 clinical
strains.

Staphylococcus aureus is also one of the most impor-
tant human pathogens, causing more than 500,000 infec-
tions in the US each year (Chang et al., 2013). By
using aptamers that specifically recognize S. aureus, Chang
et al. (2013) developed an ultrasensitive aptamer-conjugated-
AuNPs for rapid bacterial detection. Their non-polymerase
chain reaction (PCR)-based method measures the reso-
nance light-scattering signal of aptamer-conjugated AuNPs
to detect a single cell within 1.5 h. Accordingly to
the authors this platform technology has the potential to
develop a rapid and sensitive bacterial testing at point-of-care
(Chang et al., 2013).

GOLD NANOPARTICLES CHARACTERISATION OF ANTIBIOTIC
RESISTANCE PROFILES
For the past 20 years there has been an increase in the emergence
of antibiotic-resistant microorganisms with elevated pathogenesis
at the global level, leading to an urgent need for new and improved
approaches for bacterial quantification and identification (Pis-
suwan et al., 2010). Table 1 summarizes existing AuNP-based

technologies for the antibiotic susceptibility characterization of
pathogens. Particularly problematic drug resistant bacteria include
the methicillin-resistant strains of S. aureus (MRSA), responsible
for many opportunistic infections, enteropathogenic Escherichia
coli, Mtb showing multidrug resistance (MDR-TB and XRD-TB),
and Streptococcus pneumoniae. The prevalence of drug resistant
strains of Mtb (MDR and XDR-TB) and MRSA have demonstrated
the need for the development of drug susceptibility systems that
are capable of delivering an unequivocal response to identify with
high sensitivity and in a cost-efficient manner the pathogen’s resis-
tance profile and allowing fast and accurate therapeutic approach
(Kaittanis et al., 2010).

New diagnostic tools for drug resistant pathogen detection
and characterisation ought to overcome the main constraint in
terms of current molecular diagnostics – time. Several new tech-
nologies are currently being developed and validated to provide
faster and at a low cost diagnosis of resistant pathogens compar-
ing to conventional culture and drug susceptibility tests. Three
distinct operational steps that are typically required for pathogen
detection and characterization: sample preparation, target ampli-
fication, and signal read-out. Although each step can be considered
individually, it is important to emphasize that a key challenge for
development of such nucleic acid detection methods is the integra-
tion of all these steps into a unified process workflow (Figure 2).
Rapid and cost effective diagnosis will have several benefits: earlier
treatment of patients, reduction of time spent on inappropriate
and ineffective treatment (thereby promoting the development
of further drug resistance), and reduction of resistant strains
spreading in congregate settings (Veigas et al., 2012a).

AuNPs for molecular detection of antibiotic resistance in S. aureus
Methicillin-resistant strains of S. aureus is responsible for 40–
60% of all S. aureus infections in hospitals in the United

Table 1 | AuNPs-based systems for pathogen antibiotic susceptibility characterization.

Application Description Target(s) Reference(s)

Colorimetric detection of AuNPs spotted

onto an illuminated glass waveguide

Detection relies on the evaluation of SPR

change upon target hybridization

Detection of mecA gene associated

with methicillin resistance, in S. aureus

and S. aureus 23S rRNA. Validation with

clinical samples

Storhoff et al. (2004), Chan et al. (2014)

Antibiotic susceptibility

characterization

Colorimetric detection with AuNPs.

Detection relies on the evaluation of SPR

change upon aggregation and the

concomitant colorimetric changes that can

be assessed by the naked eye

Detection of rpoB mutations associated

Rifampicin resistance. Integration with

isothermal DNA amplification strategies

Veigas et al. (2010, 2013)

Colorimetric detection with AuNPs.

Detection relies on the evaluation of SPR

change upon aggregation. Sandwich

hybridization assay, AuNPs act as SPR

signal enhancers

Detection of rpoB and inhA mutations

associated with Rifampicin and

Isoniazid resistance. Integration with

surface-anchored rolling circle

amplification for isothermal DNA

amplification. Validation with clinical

samples

Xiang et al. (2013), Pedrosa et al. (2014)
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FIGURE 2 | Operational steps for pathogen detection and

characterization using NPs: sample preparation, target

amplification/direct detection, and signal read-out. The ideal portable
detection method should perform as accurately as traditional centralized
laboratory-based testing, while also overcoming the additional challenges
associated with POC testing, such as uncontrolled environmental conditions
such as inconsistent or non-existent electrical power supply, and operation by

untrained or minimally trained personnel. To overcome all the technical
limitations of actual diagnostic systems, three distinct operational steps are
required: faster simple and incorporated sample preparation, target
amplification, and signal read-out. Although each step can be individually
considered, a key challenge for development of POC nucleic acid detection
methods is integration of all these steps into a unified process and preferably
within a single device.

States and United Kingdom (Pelgrift and Friedman, 2013). Cur-
rently, the two major strategies for laboratory detection of
MRSA are bacterial culture-based phenotypic methods and NATs
(Chastre et al., 2014). While a bacterial culture-based pheno-
typic approach offers the advantages of detecting live bacteria
providing antimicrobial susceptibilities and a variety of spec-
imens, they require 1–2 days for the confirmation of MRSA
infection, due to their dependence on bacterial growth. In
contrast, nucleic acid detection assays allow rapid and sensi-
tive detection of MRSA-specific sequences directly from clinical
specimens with a turnaround time ranging from 1 to 3 h
(Bischof et al., 2009; Arbefeville et al., 2011; Kelley et al., 2011;

Chadwick et al., 2013; Chastre et al., 2014). Combining NATs and
AuNPs in a single system allows the identification the pathogen’s
resistance profile with high sensitivity and in a cost-efficient
manner providing fast and accurate therapeutic approaches (see
Table 2).

In this case, Storhoff et al. (2004) proposed the use of AuNPs for
the colorimetric detection of antibiotic resistant S. aureus strains
back in 2004 via a colorimetric“spot- and-read”assay for the detec-
tion of mecA in MRSA genomic DNA samples. In this assay, nucleic
acid targets are recognized by DNA-modified Au-nanoprobes that
undergo a color change that is visually detectable when solutions
are spotted onto an illuminated glass waveguide. This scatter-based
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Table 2 | AuNPs-based systems for pathogen antibiotic susceptibility characterization, preclinical/clinical metadata of sensitivity and specificity.

Pathogen Target Sensitivity Specificity No. of

isolates

Reference

MRSA Detection of mecA gene associated

with methicillin resistance, in S.

aureus. Genomic DNA samples

isolated from cultured bacterial cells

Analytical sensitivity of 66 pg/μl of

MRSA total genomic DNA

n.d. n.d.
Storhoff et al. (2004)

Detection of mecA gene associated

with methicillin resistance, in S.

aureus. Validation with clinical

samples

97.14% (Compared with culture

standard culture methods)

91.89% (Compared

with culture standard

culture methods)

72
Chan et al. (2014)

MDRTB Detection of rpoB mutations

associated Rifampicin resistance

84.7% (compared to NNO-LiPA Rif.

TB assay)

100% (compared to

NNO-LiPA Rif. TB

assay)

46
Veigas et al. (2010)

Detection of rpoB mutations

associated Rifampicin resistance.

Integration with isothermal DNA

amplification strategies

100% ( compared to NNO-LiPA Rif.

TB assay)

100% ( compared to

NNO-LiPA Rif. TB

assay)

12
Veigas et al. (2013)

Detection of rpoB and inhA

mutations associated with

Rifampicin and Isoniazid resistance.

Integration with surface-anchored

rolling circle amplification for

isothermal DNA amplification.

Validation with clinical samples

Analitycal sensitivity of 8.2 pg uL−1

of genomic DNA from clinical

samples

n.d. 5
Xiang et al. (2013)

Detection of rpoB and inhA

mutations associated with

Rifampicin and Isoniazid resistance.

Integration with multiplex

amplification strategy. Validation

with clinical samples

100% (compared to NNO-LiPA Rif.

TB assay)

100% (compared to

NNO-LiPA Rif. TB

assay)

25
Pedrosa et al. (2014)

method enabled the detection of nucleic acids while demonstrat-
ing a remarkable sequence specificity that allowed discrimination
of single-base mismatches, deletions or insertions (Storhoff et al.,
2004). The method relies on the cross-linking approach target-
ing the bacterial mecA gene with a limit of detection of 33 nM.
This approach was effective in discriminating genomic DNA sam-
ples of MRSA from methicillin-sensitive S. aureus (MSSA) strains,
where the detectable color change was observed only for MRSA
with very short hybridisation times (Storhoff et al., 2004). The
use of scatter light analysis coupled to the molecular identifica-
tion approach greatly enhanced detection sensitivity (∼4 orders
of magnitude) compared to previously reported absorbance-
based spot test, thus enabling detection of zeptomole amounts
of DNA target. This sensitivity is possible in a homogeneous for-
mat because aggregate formation is detectable even when only
a very small fraction of the nanoparticle probes is involved in
the hybridisation, suggesting a large change to both color and

intensity of scattered light from the complexes (Storhoff et al.,
2004).

Recently, Chan et al. (2014) reported the use of AuNPs for
direct colorimetric PCR detection of MRSA in clinical specimens.
The colorimetric assay comprised probes functionalised with spe-
cific oligonucleotides targeting S. aureus 23S rRNA and mecA
sequences. In this study, 72 clinical samples were tested, including
positive blood culture, urine, respiratory samples, as well as wound
swabs, pus and body fluid. Using conventional bacterial culture as
gold standard, the sensitivity, specificity, positive and negative pre-
dictive values of this colorimetric assay were 97.14, 91.89, 91.89,
and 97.14%, respectively. This performance compares to that of
commercial real-time PCR assays but at lower cost per reaction.
The colorimetric assay also demonstrated very good agreement
with the “gold standard” (94.44%). This study was the first report
on the use of AuNPs colorimetric assay for direct detection of
MRSA in various types of clinical specimens (Chan et al., 2014).
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Further evaluation of these assays in large-scale trials is needed
which can also allow for some modifications to streamline the
procedures for routine use.

AuNPs for molecular characterisation of antibiotic resistance in
M. tuberculosis
Tuberculosis is one of the leading causes of infection in humans,
causing high morbility and mortality all over the world. At present,
the treatment of choice for an active TB infection is long-term
antibiotic therapy, with an initial “intensive phase” consisting
of the four first-line anti-TB drugs (isoniazid, INH; rifampicin,
RIF; ethambutol, ETH; and pyrazinamide) followed by a typical
four month course of RIF and INH alone (Gaspar et al., 2008).
Despite effective treatment, due to the length of antibiotic ther-
apy, side effects frequently develop and the associated cost is high
(Garner et al., 2007; Aspler et al., 2008; Armstead and Li, 2011).
These factors correlate to low patient compliance and contribute
to the development of drug-resistant bacteria (Armstead et al.,
2011). The rate of new cases of multidrug resistant tuberculo-
sis (MDRTB) continues to increase, and due to the difficulty in
the management of such infection, it constitutes a serious health
problem (World Health Organization [WHO], 2012). The surge
of MDRTB has raised awareness towards extreme resistant TB
(XRDTB) or even totally resistant TB. In most cases, drug resis-
tance in Mtb has been related to mutations in several loci within
the pathogen’s genome. The development of fast, cheap and simple
screening methodologies is of paramount relevance for the early
detection of these mutations, essential for the timely and effective
diagnosis and management of MDRTB patients (Barnard et al.,
2008; Veigas et al., 2010; Abebe et al., 2011). Resistance to RIF is
commonly associated with point mutations within the rpoB gene
of Mtb whose detection is considered the best early molecular
predictor for MDRTB. Resistance to RIF has been associated to
single point alterations within a well-defined 81 bp region (codons
507–533) of the rpoB gene encoding for the beta subunit of RNA
polymerase. Concurrent resistance to INH and RIF is commonly
associated with point mutations in katG, inhA, and rpoB genes of
MTBC (Musser, 1995; Soini and Musser, 2001). Prompt diagnosis
of MDRTB has been the main obstacle to its correct manage-
ment and control. This problem would seem to have been solved
with the development of molecular techniques applicable also
in high-prevalence, low-income settings, such as the Genotype
MTBDR- Plus and Gene Xpert MTB/RIF assays. However, though
very rapid and highly sensitive, these tests are not considered
highly specific for the diagnosis of RIF resistance, particularly
in low prevalence settings or when mixed strains are present
(Van Deun et al., 2013).

Based on the differential non-cross-linking aggregation of
Au-nanoprobes, Baptista’s group developed a simple and straight-
forward colorimetric method for Mtb identification and single
base mutation discrimination in rpoB (Veigas et al., 2010), which
constitutes the first application of AuNPs for the specific detection
of RIF resistant Mtb. This approach uses an Au-nanoprobe assay
for the rapid detection of MTBC strains and simultaneous char-
acterisation of mutations associated with RIF resistance, namely
mutations in codons 516, 526, and 531 of rpoB gene from MTBC
clinical specimens with remarkable sensitivity in a few hours. To

assure high selectivity and sensitivity, two nanoprobes are simul-
taneously used to tackle each mutation – one recognizing the
wild-type sequence and another for the mutated. By doing so, this
approach correctly detected the presence of DNA from members
of the MTBC in 83.3% of all tested samples. The initial approach
required a simple PCR amplification of a large region spreading the
targets sequences for the nanoprobes, and the resulting amplicons
tested directly with the Au-nanoprobe system. The molecular char-
acterisation step takes only 15 min to yield a colorimetric result
that, through the use of a suitable photodetector (e.g., UV/visible
spectrophotometer, microplate reader, etc.) allows for medium
throughput analysis at a peripheral laboratory. A limit of detection
could be set at 75 nM, however, for robust single base mismatch
determination, 117 nM of DNA target were used per assay (see
also Table 2).

More recently, the same group extended and improved this
detection strategy towards the simultaneous discrimination of
specific mutations within inhA and rpoB genes in PCR ampli-
fied DNA from isolates. Using a multiplex PCR reaction, it was
possible to assess both loci in parallel, and extend the potential of
the Au-nanoprobe method to MDRTB molecular characterisation
with special application in the most frequent Portuguese geno-
types (Pedrosa et al., 2014). Based on the molecular signatures
of susceptibility of MTBC members to first line antibiotics, RIF,
INH, and ethionamide (ETH), a two-step approach was developed,
based on the multi loci PCR amplification of gene fragments and
subsequent hybridisation with specific Au-nanoprobe. The two
target sequences harbor the most common mutations associated
with resistance to these antibiotics, rpoB S531L, inhA C(-)15T
and are amplified by a set of rpoB primer pairs flanking unique
regions specific for MTBC members – first level of identification.
The MTBC Au-nanoprobe constitutes a second level of identifica-
tion. Another two sets of nanoprobes are used to discriminate
the desired mutations. This approach brings new possibilities
for MDRTB diagnostics as the Au-nanoprobe methodology may
become an useful tool for MDRTB molecular characterisation at
a point-of-need (Pedrosa et al., 2014).

Conventional TB diagnosis methods (such as Ziehl-Neelsen or
Kinyoun for staining sputum smears, egg-based media for cul-
ture, and solid media for antimicrobial susceptibility testing) have
been used for almost 50 years presenting low sensitivity, speci-
ficity, and a high turn-around time. Although some laboratories
use fluorochrome stains and liquid-based media for cultures, small
hospitals or clinics cannot use these methods due to the need of
high technical expertise, equipment, and expensive materials. The
quality of sputum specimens and contamination of specimens
due to inappropriate storage and/or long transport times to the
laboratory has been a critical bottleneck (Wilson, 2011).

The development of complete, accurate and simple TB diag-
nostic tests able to target relevant TB sequences and assessing
multidrug resistance cases has been one of the major bottle-
necks for TB effective detection and treatment. Au-nanoprobes
integrated within a paper-based platform may be proven to be
an accurate, rapid, low-cost, and user friendly nanosystem for
the identification of specific DNA sequences of TB, confirming
infection and allowing identification of MDRTB strains. This
nanosystem allows earlier treatment, reduction of time spent
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on inappropriate and ineffective treatment and reduction of
MDRTB spread in congregate settings making it ideal for large
screening and/or at point-of-need. The ability of coupling the
LAMP amplification strategy to specific Au-nanoprobes translates
into additional benefits: it eliminates the PCR amplification step
bypassing the need of specialized machines and technicians, assess-
ing multiple antibiotic resistances in the field and reaching remote
communities.

Integration of isothermal amplification techniques to AuNPs
strategies. Isothermal amplification techniques have been recently
developed as an alternative to PCR for target DNA amplifi-
cation and detection without the use of a thermocycler (Gill
and Ghaemi, 2008). Thermophilic helicase-dependent isother-
mal amplification uses a thermostable helicase to unwind the
double stranded DNA (dsDNA) and generate single stranded tem-
plates that are used for further polymerase amplification (Lixin
et al., 2005). The dsDNA separation and amplification are per-
formed at the same temperature, which makes this technique
suitable for development of point-of-care microbial detection
systems, since a thermocycler is not required for DNA denatu-
ration and amplification (Tomita et al., 2008; Jeong et al., 2009).
Recently, a AuNP based DNA biosensor for the detection of
Mtb using thermophilic helicase-dependent isothermal amplifi-
cation was developed (Torres-Chavolla and Alocilja, 2011). In
recent years, Loop-mediated isothermal amplification (LAMP,
Eiken Chemical Co. Ltd., Tokyo, Japan) assay has been intro-
duced for the diagnosis of pulmonary TB (Yuan et al., 2013).
The general LAMP procedure uses four primers to achieve a
cyclical amplification process based on spontaneous formation
of stem-loop DNA structures. This process also utilizes a poly-
merase with strand displacement capability. LAMP has been
used to successfully detect a wide range of pathogens including
malaria, HIV, and multiplexed detection of bacteria (Hartman
et al., 2013).

Further improvements to the Au-nanoprobe system described
above were attained via LAMP amplification strategy coupled
to specific Au-nanoprobes for molecular identification of MTBC
members and resistance signatures, such as RIF resistance (Veigas
et al., 2013). Taking advantage of such features, they demon-
strated that the non-cross-linking system is capable to dis-
criminate the rpoB S531L point mutation on LAMP products
and, thus, opening new possibilities for MDRTB diagnostics
in remote environments and at a point-of-care. LAMP origi-
nates long DNA concatamers that can easily be assessed via a
set of nanoprobes for individual sequence identities, demonstrat-
ing that it is possible to use an Au-nanoprobe based strategy
to detect single point alteration on isothermally amplified DNA
products.

Despite the several benefits presented by these nanodiagnostics
systems, translation into the clinics is still unaccomplished. Most
of the TB nanosystems reported in the literature still lack validation
and for most of them integration in one simple platform capable
of eliminating the need for DNA purification and amplification
is of utmost importance. Refinement of these laboratory strate-
gies into one single nanodevice may speed up translation into the
field.

Rolling circle amplification. Following on the development of
isothermal amplification methods, Xiang et al. (2013) developed
a surface-anchored rolling circle amplification (RCA) integrated
with Au-nanoprobes to isothermally detect multiple point muta-
tions associated with MDRTB with a wild-type to mutant ratio
of 5000:1. This work introduced a new SPR method for multi-
plex mutation detection based on surface signal amplification. The
high sensitivity and specificity of this method mainly attributed to
the high-fidelity of ligation, multiplexing characteristics of probes,
amplification potential of surface-anchored RCA and Au NPs, and
intrinsically high sensitivity of SPR biosensor. The L-RCA by ligase
relies on base pairing principle which requires perfect complemen-
tarity on the ligation nick. It not only forbids the mismatch but
also has a low occurrence of false positive results when compared
to PCR (Lizardi et al., 1998). Because RCA amplifies only the cir-
cular PLP without accumulation of target templates over time, it
minimizes the risk of contamination and the potential biohazard.
Besides, the Au-nanoprobes further enhance identification due to
the sandwich hybridisation. Upon recognition, each point muta-
tion is identified by locating into the corresponding channel on
a chip, which allows the immobilized primer (capture probe)–
template (circular PLP) complex to isothermally amplify as RCA
and further amplified by AuNPs. Binding of the AuNPs to the RCA
products acts as the electromagnetic field coupling to the gold film,
thus enhancing the plasmon resonance derived by excitation by
the incident light, leading to improvement of the transduction of
small changes in refractive index on the chip surface media, thus
improving sensitivity (Petryayeva and Krull, 2011).

NANODIAGNOSTICS FOR POINT OF CARE APPLICATIONS
Despite the amazing advances of nanotechnology the effective
translation to the clinical setting and to the molecular detec-
tion and/or characterisation has not been fully applied (Hauck
et al., 2010). Nanotechnology, and NPs, based molecular identi-
fication systems have focused on increasing sensitivity and speed
when compared to traditional methodologies. However, nowadays
researchers have been gearing their efforts towards the devel-
opment of nanotechnology-based systems that are affordable,
robust and reproducible, making them suitable for applications
even in areas that lack dedicated and expensive laboratory equip-
ment. In fact, AuNPs based systems have been proposed and
used for the identification of different pathogens with one com-
mon ground – making it simple and affordable. Considering
that most of these systems rely on the molecular recognition of
selective and specific sequences in DNA, we are only one step
away from identifying molecular signatures of resistance. In fact,
only by bringing together these platforms and those at the fore-
front of antibiotic resistance characterisation (e.g., microbiologist
and clinicians), definite translation can be achieved. Technol-
ogy integration together with the possibility of miniaturization
is of utmost importance for the development of an integrated
biosensor suitable for peripheral laboratories and/or point-of-care
diagnostics, providing a new tool in the fight against TB.

Nonetheless, there has been some effort towards bringing
these technologies to point-of-care application. For example, the
Au-nanoprobe system for characterisation of mutations associ-
ated to drug resistance in TB has been further integrated with a
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paper-based platform for fast and easy to use detection of MTBC
members – Gold on Paper (Veigas et al., 2012b; Costa et al., 2014).
Gold on Paper is the working concept of integrating a paper micro
well platform and a biomolecular detection scheme based on Au-
nanoprobes. Gold on Paper showed to be capable of efficiently
detect MTBC members directly and, by means of a smartphone
device, analyzing data on the spot while maintaining sensitivity
and specificity. This demonstrates that systems such as Gold on
Paper may be easy to perform without the need for expensive and
complex laboratory set up. Using this concept, it is possible to
attain a positive identification of the pathogen within one hour,
which via the use of a generic “smart” mobile device allows for
complete analysis at a peripheral laboratory, and transmit digital
information over existing communications channels, combined
with GPS location metadata inserted into the captured digital
images (Veigas et al., 2012b). The limitation imposed by the DNA
sample preparation is greatly overcome by the potential use of this
methodology to identify and characterize the molecular signa-
tures involved in antibiotic resistance. This integrated diagnostics
scheme can then forward the attained data to a centralized off-
site server allowing for monitoring of TB in real-time that could
be proven extremely useful in remote areas of the globe lacking
resources (Veigas et al., 2012b).

Monitoring for drug-induced liver injury (DILI) via serial
transaminase measurements in patients on potentially hepatotoxic
medications (e.g., for HIV and TB) is routine in resource-
rich nations, but often unavailable in resource-limited settings.
Towards enabling universal access to affordable point-of-care
screening for DILI, Pollock et al. (2013) have performed the first
field evaluation of a paper-based, microfluidic finger-stick test
for rapid, semi-quantitative, visual measurement of blood ala-
nine aminotransferase. The objective was to assess operational
feasibility, inter-operator variability, lot variability, device fail-
ure rate, and accuracy, to inform device modification for further
field testing. The paper-based alanine aminotransferase test was
performed at point-of-care on fingerstick samples from 600 out-
patients receiving HIV treatment in Vietnam (Pollock et al., 2013).
This first field study performed with a paper-based microflu-
idic device opens the door to development of similar assays for
other important analytes and also for assessing MDRTB and
MRSA.

Based on these principles new technologies were developed
and are today available in the market. For example, Nanosphere
offers two products approved by the FDA, one aimed at identi-
fying typical mutations in coagulation factors without the need
for nucleic acid amplification; another used to genotype polymor-
phisms associated with warfarin metabolism. In both cases the
samples are processed through a cartridge where the sample ana-
lyzed via an automated processor and reader (Lefferts et al., 2010;
Maurice et al., 2010).

CONCLUSIONS AND FUTURE PERSPECTIVES
Over the past decades, noble metal NPs, due to their optical and
physic-chemical properties, have been used in proof-of-concept
biosensing tools for the sensitive detection of pathogens of inter-
est. Amongst these biosensing platforms, several have focused on
the specific identification of DNA/RNA sequences associated to

molecular signatures of infection and antibiotic resistance. AuNP
based assays have progressively been integrated into sensing plat-
forms capable of increasing sensitivity and lowering costs. Here,
we provided an overview of existing strategies relying on the use
of AuNPs for detection of molecular markers of antibiotic resis-
tance. Despite the desperate need for robust, yet simple and cheap,
screening tools to identify MDR pathogens, there are not that
many concepts making it through to validation in the laboratory
set. It is clear that microbiologists need to integrate the multidis-
ciplinary teams that provide for nanodiagnostics development so
as to widen the scope of combinations and modalities that can be
easily coupled to current molecular nanodiagnostics technologies
so as to facilitate integration to the lab and clinical setting.

Detection strategies based on AuNPs provide comparable
detection capability to that of standard techniques but at a fraction
of cost and time, usually not requiring cumbersome sample prepa-
ration or equipment. As such, nanoparticle based approaches are
expected to be incrementally applied to MDR characterisation and
pathogen detection with particular emphasis for systems capable
to operate at point-of-need. However, despite the massive invest-
ment in these technologies, translation to the clinics is yet to be
fulfilled. Most of the reported systems in the literature still lack
validation and/or are in pre-clinic stages with few commercially
available products being available to the clinician. The next step
is clearly to focus on the translation of some of the strategies that
exist in the lab into the field and to the bedside.
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