[ Publications ]

Export 71 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Preliminary crystallographic analysis of the oxidized form of a two mono-nuclear iron centres protein from Desulfovibrio desulfuricans ATCC 27774, Coelho, A. V., Matias P. M., Carrondo M. A., Tavares P., Moura J. J. G., Moura I., Fulop V., Hajdu J., and Legall J. , PROTEIN SCIENCE, Jul, Volume {5}, Number {6}, p.{1189-1191}, (1996) Abstract

Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 Angstrom and c = 63.2 Angstrom; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 Angstrom, b = 80.9 Angstrom, c = 53.9 Angstrom, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function.

Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates, Ferreira, I. M. P. L. V., Pinho O., Mota M. V., Tavares P., Pereira A., Goncalves M. P., Torres D., Rocha C., and Teixeira J. A. , INTERNATIONAL DAIRY JOURNAL, Jun, Volume {17}, Number {5}, p.{481-487}, (2007) Abstract

This study describes the characterisation of whey protein hydrolysates obtained from tryptic hydrolysis to assess their application as ingredients with angiotensin-converting-enzyme (ACE) inhibitory action. The levels of a-lactalbumin (alpha-la) and P-lactoglobulin (beta-lg) remaining after hydrolysis were quantified. Peptides were separated by RP-HPLC, and Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR), the most potent beta-lg-derived ACE-inhibitory peptide was monitored. A correlation curve was established for the production of this peptide as a function of hydrolysis time. Heat-induced gelation of hydrolysates was studied by small-deformation rheology. The gelation times and the strength of the final gels were highly dependent on the degree of hydrolysis. Smaller peptides liberated by hydrolysis contributed to the inability of whey protein hydrolysates to gel. (c) 2006 Elsevier Ltd. All rights reserved.

Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins, Devreese, B., Tavares P., Lampreia J., Van Damme N., Legall J., Moura J. J. G., Van Beeumen J., and Moura I. , FEBS Letters, Volume {385}, Number {3}, p.{138-142}, (1996) Abstract

The primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a redox protein with two mononuclear iron sites, was determined by automatic Edman degradation and mass spectrometry of the composing peptides, It contains 125 amino acid residues of which five are cysteines, The first four, Cys-9, Cys-12, Cys-28 and Cys-29, are responsible for the binding of Center I which has a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from D. gigas, The remaining Cys-115 is proposed to be involved in the coordination of Center II, which is probably octahedrally coordinated with predominantly nitrogen/oxygen containing ligands as previously suggested by Mossbauer and Raman spectroscopy.

Probing the iron environment in desulforedoxin. EXAFS of oxidized and reduced states, Stalhandske, CMV, Dong J., Tavares P., Liu M. Y., Legall J., Moura J. J. G., Moura I., Park J. B., Adams M. W. W., and Scott R. A. , INORGANICA CHIMICA ACTA, Volume {273}, Number {1-2}, p.{409-411}, (1998) Abstract

Fe XAS data were collected on the oxidized and reduced forms of desulforedoxin from Desulfovibrio gigas, the oxidized form of rubredoxin from Clostridium pasteurianum, and the reduced form of rubredoxin from Pyrococcus furiosus. Analysis of these data is consistent with tetrahedral FeS(4) coordination in both oxidation states, and an expansion of the Fe-S distances from 2.27 to 2.33 Angstrom upon reduction. (C) 1998 Elsevier Science S.A. All rights reserved.

Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Almendra, M. J., Brondino C. D., Gavel O., Pereira A. S., Tavares P., Bursakov S., Duarte R., Caldeira J., Moura J. J. G., and Moura I. , Biochemistry, Volume {38}, Number {49}, p.{16366-16372}, (1999) Abstract

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.