[ Publications ]

Export 69 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J. G., Moura I., and Huynh B. H. , Biochemistry, Volume {37}, Number {9}, p.{2830-2842}, (1998) Abstract

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2 Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

Metalloenzymes of the denitrification pathway, Tavares, P., Pereira A. S., Moura J. J. G., and Moura I. , Journal Of Inorganic Biochemistry, Dec, Volume {100}, Number {12}, p.{2087-2100}, (2006) Abstract

Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by some bacteria for energy generation. This process is important in many aspects, but its environmental implications have been given particular relevance. Nitrate accumulation and release of nitrous oxide in the atmosphere due to excess use of fertilizers in agriculture are examples of two environmental problems where denitrification plays a central role. The reduction of nitrate to nitrogen gas is accomplished by four different types of metalloenzymes in four simple steps: nitrate is reduced to nitrite, then to nitric oxide, followed by the reduction to nitrous oxide and by a final reduction to dinitrogen. In this manuscript we present a concise updated review of the bioinorganic aspects of denitrification. (c) 2006 Elsevier Inc. All rights reserved.

TOTAL SYNTHESIS OF A SIMPLE METALLOPROTEIN - DESULFOREDOXIN, Tavares, P., Wunderlich J. K., Lloyd S. G., Legall J., Moura J. J. G., and Moura I. , Biochemical And Biophysical Research Communications, Volume {208}, Number {2}, p.{680-687}, (1995) Abstract

Desulforedoxin is a protein purified from cellular extracts of Desulfovibrio gigas. It is a small (7.9 kDa) dimeric protein that contains a distorted rubredoxin like center (one single iron coordinated by four cysteinyl residues). Due to the simplicity of the polypeptide chain and of the iron center, an attempt was made to chemically produce this protein. A 36 amino acid polypeptide chain was synthesized based on the known sequence of native Desulforedoxin. The iron center was then reconstituted and the biochemical and spectroscopic characteristics of this synthetic protein were investigated. The final product has an equal sequence to the protein purified from D. gigas. The synthetic and natural Dr are very similar, in terms of redox potential and spectroscopic properties (UV-Visible, EPR, Mossbauer). (C) 1995 Academic Press, Inc.

S
Probing the iron environment in desulforedoxin. EXAFS of oxidized and reduced states, Stalhandske, CMV, Dong J., Tavares P., Liu M. Y., Legall J., Moura J. J. G., Moura I., Park J. B., Adams M. W. W., and Scott R. A. , INORGANICA CHIMICA ACTA, Volume {273}, Number {1-2}, p.{409-411}, (1998) Abstract

Fe XAS data were collected on the oxidized and reduced forms of desulforedoxin from Desulfovibrio gigas, the oxidized form of rubredoxin from Clostridium pasteurianum, and the reduced form of rubredoxin from Pyrococcus furiosus. Analysis of these data is consistent with tetrahedral FeS(4) coordination in both oxidation states, and an expansion of the Fe-S distances from 2.27 to 2.33 Angstrom upon reduction. (C) 1998 Elsevier Science S.A. All rights reserved.

Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles, Siopa, Filipa, Pereira Alice S., Ferreira Luisa M., Matilde Marques M., and Branco Paula S. , BIOORGANIC CHEMISTRY, Oct, Volume {44}, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA, p.{19-24}, (2012) Abstract

The enzymatic (tyrosinase) and chemical (NaIO4, Ag2O or Fremys's salt) oxidation of biologically relevant catecholamines, such as dopamine (DA), N-acetyldopamine (NADA) and the Ecstasy metabolites (alpha-MeDA and N-Me-alpha-MeDA) generates the corresponding o-quinone which can be trapped with nitrogen bionucleophiles such as N-acetyl-histidine and imidazole in a regioselective reaction that takes place predominantly at the 6-position of the catecholamine. (C) 2012 Elsevier Inc. All rights reserved.