[ Publications ]

Export 71 results:
Sort by: Author Title Type [ Year  (Desc)]
1998
Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization, Pereira, A. S., Small W., Krebs C., Tavares P., Edmondson D. E., Theil EC, and Huynh B. H. , Biochemistry, Volume {37}, Number {28}, p.{9871-9876}, (1998) Abstract

Rapid freeze-quench (RFQ) Mossbauer and stopped-flow absorption spectroscopy were used to monitor the ferritin ferroxidase reaction using recombinant (apo) frog M ferritin; the initial transient ferric species could be trapped by the RFQ method using low iron loading (36 Fe2+/ferritin molecule). Biphasic kinetics of ferroxidation were observed and measured directly by the Mossbauer method; a majority (85%) of the ferrous ions was oxidized at a fast rate of similar to 80 s(-1) and the remainder at a much slower rate of similar to 1.7 s(-1). In parallel with the fast phase oxidation of the Fe2+ ions, a single transient iron species is formed which exhibits magnetic properties (diamagnetic ground state) and Mossbauer parameters (Delta E-Q = 1.08 +/- 0.03 mm/s and delta = 0.62 +/- 0.02 mm/s) indicative of an antiferromagnetically coupled peroxodiferric complex. The formation and decay rates of this transient diiron species measured by the RFQ Mossbauer method match those of a transient blue species (lambda(max) = 650 nm) determined by the stopped-flow absorbance measurement. Thus, the transient colored species is assigned to the same peroxodiferric intermediate. Similar transient colored species have been detected by other investigators in several other fast ferritins (H and M subunit types), such as the human H ferritin and the Escherichia coli ferritin, suggesting a similar mechanism for the ferritin ferroxidase step in all fast ferritins. Peroxodiferric complexes are also formed as early intermediates in the reaction of O-2 With the catalytic diiron centers in the hydroxylase component of soluble methane monooxygenase (MMOH) and in the D84E mutant of the R2 subunit of E. coli ribonucleotide reductase. The proposal that a single protein site, with a structure homologous to the diiron centers in MMOH and R2, is involved in the ferritin ferroxidation step is confirmed by the observed kinetics, spectroscopic properties, and purity of the initial peroxodiferric species formed in the frog M ferritin.

Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly, Valentine, AM, Tavares P., Pereira A. S., Davydov R., Krebs C., Koffman BM, Edmondson D. E., Huynh B. H., and Lippard SJ , Journal Of The American Chemical Society, Volume {120}, Number {9}, p.{2190-2191}, (1998) Abstract
n/a
Probing the iron environment in desulforedoxin. EXAFS of oxidized and reduced states, Stalhandske, CMV, Dong J., Tavares P., Liu M. Y., Legall J., Moura J. J. G., Moura I., Park J. B., Adams M. W. W., and Scott R. A. , INORGANICA CHIMICA ACTA, Volume {273}, Number {1-2}, p.{409-411}, (1998) Abstract

Fe XAS data were collected on the oxidized and reduced forms of desulforedoxin from Desulfovibrio gigas, the oxidized form of rubredoxin from Clostridium pasteurianum, and the reduced form of rubredoxin from Pyrococcus furiosus. Analysis of these data is consistent with tetrahedral FeS(4) coordination in both oxidation states, and an expansion of the Fe-S distances from 2.27 to 2.33 Angstrom upon reduction. (C) 1998 Elsevier Science S.A. All rights reserved.

Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J. G., Moura I., and Huynh B. H. , Biochemistry, Volume {37}, Number {9}, p.{2830-2842}, (1998) Abstract

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2 Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.

1997
Conversion of desulforedoxin into a rubredoxin center, Yu, L., Kennedy M., Czaja C., Tavares P., Moura J. J. G., Moura I., and Rusnak F. , Biochemical And Biophysical Research Communications, Volume {231}, Number {3}, p.{679-682}, (1997) Abstract

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)(4) center, However the spectroscopic properties of the center in desulforedoxin differ from rubredoxin, These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated high-spin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin. (C) 1997 Academic Press.