Publications

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Inácio, JM, Correia IL, de Sá-Nogueira I.  2008.  Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology. 154:2719-2729., Number 9 Abstract

Bacillus subtilis produces α-L-arabinofuranosidases (EC 3.2.1.55; AFs) capable of releasing arabinosyl oligomers and L-arabinose from plant cell walls. Here, we show by insertion-deletion mutational analysis that genes abfA and xsa(asd), herein renamed abf2, encode AFs responsible for the majority of the intracellular AF activity in B. subtilis. Both enzyme activities were shown to be cytosolic and functional studies indicated that arabino-oligomers are natural substrates for the AFs. The products of the two genes were overproduced in Escherichia coli, purified and characterized. The molecular mass of the purified AbfA and Abf2 was about 58 kDa and 57 kDa, respectively. However, native PAGE gradient gel analysis and cross-linking assays detected higher-order structures (>250 kDa), suggesting a multimeric organization of both enzymes. Kinetic experiments at 37°C, with p-nitrophenyl-α-L-arabinofuranoside as substrate, gave an apparent Km of 0.498 mM and 0.421 mM, and Vmax of 317 U mg−1 and 311 U mg−1 for AbfA and Abf2, respectively. The two enzymes displayed maximum activity at 50°C and 60°C, respectively, and both proteins were most active at pH 8.0. AbfA and Abf2 both belong to family 51 of the glycoside hydrolases but have different substrate specificity. AbfA acts preferentially on (1→5) linkages of linear α-1,5-L-arabinan and α-1,5-linked arabino-oligomers, and is much less effective on branched sugar beet arabinan and arabinoxylan and arabinogalactan. In contrast, Abf2 is most active on (1→2) and (1→3) linkages of branched arabinan and arabinoxylan, suggesting a concerted contribution of these enzymes to optimal utilization of arabinose-containing polysaccharides by B. subtilis.

Inácio, JM, de Sá-Nogueira I.  2008.  Characterization of abn2 (yxiA), Encoding a Bacillus subtilis GH43 Arabinanase, Abn2, and Its Role in Arabino-Polysaccharide Degradation. Journal of Bacteriology. 190:4272-4280., Number 12 Abstract

The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-α-1,5-L-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-α-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent Km of 2.0 mg ml−1 and Vmax of 0.25 mmol min−1 mg−1 at pH 7.0 and 50°C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a σA-dependent and a σH-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.

Inácio, JM, Costa C, de Sá-Nogueira I.  2003.  Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology. 149:2345-2355., Number 9 Abstract

The Bacillus subtilis proteins involved in the utilization of L-arabinose are encoded by the araABDLMNPQ–abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. Additionally, expression of both the ara operon and the araE gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the ara regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (cres) present in the ara operon (cre araA and cre araB) and one cre in the araE gene (cre araE) are implicated in this mechanism. Furthermore, cre araA located between the promoter region of the ara operon and the araA gene, and cre araB placed 2 kb downstream within the araB gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at cre araB was detected, suggesting that transcription ‘roadblocking’ of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the ara regulon, which requires a functional araR.

Inácio, JM, de Sá-Nogueira I.  2007.  trans-Acting Factors and cis Elements Involved in Glucose Repression of Arabinan Degradation in Bacillus subtilis.. Journal of Bacteriology. 189:8371-8376., Number 22 Abstract

In Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMNPQ-abfA operon. The contributions of the coeffectors HPr and Crh to CCR differ according to growth phase. HPr dependency occurs during both exponential growth and the transitional phase, while Crh dependency is detected mainly at the transitional phase. Our results suggest that Crh synthesis may increase at the end of exponential growth and consequently contribute to this effect, together with other factors.