Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
de Sanctis, D, Inácio JM, Lindley PF, de Sá-Nogueira I, Bento I.  2010.  New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. FEBS Journal. 277:4562-4574. Abstract

Endo-1,5-α-L-arabinanases are glycosyl hydrolases that are able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. Two extracellular endo-1,5-α-L-arabinanases have been isolated from Bacillus subtilis, BsArb43A and BsArb43B (formally named AbnA and Abn2, respectively). BsArb43B shows low sequence identity with previously characterized 1,5-α-L-arabinanases and is a much larger enzyme. Here we describe the 3D structure of native BsArb43B, biochemical and structure characterization of two BsArb43B mutant proteins (H318A and D171A), and the 3D structure of the BsArb43B D171A mutant enzyme in complex with arabinohexose. The 3D structure of BsArb43B is different from that of other structurally characterized endo-1,5-α-L-arabinanases, as it comprises two domains, an N-terminal catalytic domain, with a 3D fold similar to that observed for other endo-1,5-α-L-arabinanases, and an additional C-terminal domain. Moreover, this work also provides experimental evidence for the presence of a cluster containing a calcium ion in the catalytic domain, and the importance of this calcium ion in the enzymatic mechanism of BsArb43B.

2008
Inácio, JM, Correia IL, de Sá-Nogueira I.  2008.  Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology. 154:2719-2729., Number 9 Abstract

Bacillus subtilis produces α-L-arabinofuranosidases (EC 3.2.1.55; AFs) capable of releasing arabinosyl oligomers and L-arabinose from plant cell walls. Here, we show by insertion-deletion mutational analysis that genes abfA and xsa(asd), herein renamed abf2, encode AFs responsible for the majority of the intracellular AF activity in B. subtilis. Both enzyme activities were shown to be cytosolic and functional studies indicated that arabino-oligomers are natural substrates for the AFs. The products of the two genes were overproduced in Escherichia coli, purified and characterized. The molecular mass of the purified AbfA and Abf2 was about 58 kDa and 57 kDa, respectively. However, native PAGE gradient gel analysis and cross-linking assays detected higher-order structures (>250 kDa), suggesting a multimeric organization of both enzymes. Kinetic experiments at 37°C, with p-nitrophenyl-α-L-arabinofuranoside as substrate, gave an apparent Km of 0.498 mM and 0.421 mM, and Vmax of 317 U mg−1 and 311 U mg−1 for AbfA and Abf2, respectively. The two enzymes displayed maximum activity at 50°C and 60°C, respectively, and both proteins were most active at pH 8.0. AbfA and Abf2 both belong to family 51 of the glycoside hydrolases but have different substrate specificity. AbfA acts preferentially on (1→5) linkages of linear α-1,5-L-arabinan and α-1,5-linked arabino-oligomers, and is much less effective on branched sugar beet arabinan and arabinoxylan and arabinogalactan. In contrast, Abf2 is most active on (1→2) and (1→3) linkages of branched arabinan and arabinoxylan, suggesting a concerted contribution of these enzymes to optimal utilization of arabinose-containing polysaccharides by B. subtilis.

de Sanctis, D, Bento I, Inácio JM, Custódio S, de Sá-Nogueira I, Carrondo MA.  2008.  Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-α-arabinanase from Bacillus subtilis Acta Crystallographica Section F. 64:636–638., Number 7 Abstract

Two Bacillus subtilis extracellular endo-1,5-α-L-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-α-L-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized. Crystals appeared in two different space groups: P1, with unit-cell parameters a = 51.9, b = 57.6, c = 86.2 Å, α = 82.3, β = 87.9, ɣ = 63.6°, and P212121, with unit-cell parameters a = 57.9, b = 163.3, c = 202.0 Å. X-ray data have been collected for the native and the SeMet derivative to 1.9 and 2.7 Å resolution, respectively. An initial model of Abn2 is being built in the SeMet-phased map.

Inácio, JM, de Sá-Nogueira I.  2008.  Characterization of abn2 (yxiA), Encoding a Bacillus subtilis GH43 Arabinanase, Abn2, and Its Role in Arabino-Polysaccharide Degradation. Journal of Bacteriology. 190:4272-4280., Number 12 Abstract

The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-α-1,5-L-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-α-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent Km of 2.0 mg ml−1 and Vmax of 0.25 mmol min−1 mg−1 at pH 7.0 and 50°C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a σA-dependent and a σH-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.

2007
Inácio, JM, de Sá-Nogueira I.  2007.  trans-Acting Factors and cis Elements Involved in Glucose Repression of Arabinan Degradation in Bacillus subtilis.. Journal of Bacteriology. 189:8371-8376., Number 22 Abstract

In Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMNPQ-abfA operon. The contributions of the coeffectors HPr and Crh to CCR differ according to growth phase. HPr dependency occurs during both exponential growth and the transitional phase, while Crh dependency is detected mainly at the transitional phase. Our results suggest that Crh synthesis may increase at the end of exponential growth and consequently contribute to this effect, together with other factors.

2004
Raposo, MP, Inácio JM, Mota LJ, de Sá-Nogueira I.  2004.  Transcriptional Regulation of Genes Encoding Arabinan-Degrading Enzymes in Bacillus subtilis. Journal of Bacteriology. 186:1287-1296., Number 5 Abstract

Bacillus subtilis produces hemicellulases capable of releasing arabinosyl oligomers and arabinose from plant cell walls. In this work, we characterize the transcriptional regulation of three genes encoding arabinan-degrading enzymes that are clustered with genes encoding enzymes that further catabolize arabinose. The abfA gene comprised in the metabolic operon araABDLMNPQ-abfA and the xsa gene located 23 kb downstream most probably encode α-L-arabinofuranosidases (EC 3.2.1.55). Here, we show that the abnA gene, positioned immediately upstream from the metabolic operon, encodes an endo-α-1,5-arabinanase (EC 3.2.1.99). Furthermore, by in vivo RNA studies, we inferred that abnA and xsa are monocistronic and are transcribed from σA-like promoters. Transcriptional fusion analysis revealed that the expression of the three arabinases is induced by arabinose and arabinan and is repressed by glucose. The levels of induction by arabinose and arabinan are higher during early postexponential growth, suggesting a temporal regulation. Moreover, the induction mechanism of these genes is mediated through negative control by the key regulator of arabinose metabolism, AraR. Thus, we analyzed AraR-DNA interactions by in vitro quantitative DNase I footprinting and in vivo analysis of single-base-pair substitutions within the promoter regions of xsa and abnA. The results indicate that transcriptional repression of the abfA and xsa genes is achieved by a tightly controlled mechanism but that the regulation of abnA is more flexible. We suggest that the expression of genes encoding extracellular degrading enzymes of arabinose-containing polysaccharides, transport systems, and intracellular enzymes involved in further catabolism is regulated by a coordinate mechanism triggered by arabinose via AraR.

2003
Inácio, JM, Costa C, de Sá-Nogueira I.  2003.  Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology. 149:2345-2355., Number 9 Abstract

The Bacillus subtilis proteins involved in the utilization of L-arabinose are encoded by the araABDLMNPQ–abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. Additionally, expression of both the ara operon and the araE gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the ara regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (cres) present in the ara operon (cre araA and cre araB) and one cre in the araE gene (cre araE) are implicated in this mechanism. Furthermore, cre araA located between the promoter region of the ara operon and the araA gene, and cre araB placed 2 kb downstream within the araB gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at cre araB was detected, suggesting that transcription ‘roadblocking’ of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the ara regulon, which requires a functional araR.