Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Palma, SICJ, Fernandes AR, Roque ACA.  2016.  An affinity triggered MRI nanoprobe for pH-dependent cell labeling, 2016. RSC Advances. 6(114):113503-113512.: The Royal Society of Chemistry AbstractWebsite

The pH-sensitive affinity pair composed by neutravidin and iminobiotin was used to develop a multilayered Magnetic Resonance Imaging (MRI) nanoprobe responsive to the acidic pH of tumor microenvironment. The multilayer system was assembled on meso-2,3-dimercaptosuccinic acid-coated iron oxide magnetic nanoparticles (MNP), which convey negative MRI contrast enhancement properties to the nanoprobe. The outer stealth PEG-layer is altered in acidic media due to the disruption of interactions between neutravidin-iminobiotin. As a consequence, the positively charged inner layer is exposed and enhances interactions with cells. The nanoprobe uptake by HCT116 cells cultured in vitro under acidic conditions had a 2-fold increase compared to the uptake at physiological pH. The uptake difference is particularly clear in T2-weighted MRI phantoms of cells incubated with the nanoprobes at both pH conditions. This work sets the proof-of-concept of a MNP-based MRI nanoprobe targeting acidic tumor microenvironment through the use of a specific bio-recognition interaction that is pH-sensitive. This tumor targeting strategy is potentially applicable to the generality of tumors since the typical hypoxic conditions and high glycolysis rate in cancer cells create an acidic environment common to the majority of cancer types.

Veigas, B, Matias A, Calmeiro T, Fortunato E, Fernandes AR, Baptista PV.  2019.  Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis, 2019. Analyst. 144(11):3613-3619. AbstractWebsite

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation and one of the main causes of chronic disability worldwide with high prevalence in the ageing population. RA is characterized by autoantibody production, synovial inflammation and bone destruction, and the most accepted biomarker is rheumatoid factor (RF) autoantibodies. In this work, we developed a low-cost approach for the detection and quantification of the RF marker. This colorimetric immunosensor is based on gold nanoprobe crosslinking that results in extensive aggregation in the presence of the pentameric IgM RF. Aggregation of the nanoconjugates yields a color change from red to purple that can be easily observed by the naked eye. The interaction between nanoconjugates and the specific target was confirmed via dynamic light scattering (DLS), Raman spectroscopy and atomic force microscopy (AFM) imaging. This conceptual system shows a LOD of 4.15 UA mL(-1) IgM RF (clinical threshold is set for 20 IU mL(-1)). The one-step biosensor strategy herein proposed is much faster than conventional detection techniques, without the need for secondary antibodies, additional complex washing or signal amplification protocols. To the best of our knowledge this is the first report on target induced aggregation of gold nanoprobes for quantitative colorimetric autoantibody detection.

Kordestani, N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, 2020. ACS Comb Sci. 22(2):89-99. AbstractWebsite

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 muM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Sutradhar, M, Alegria ECBA, Ferretti F, Raposo LR, Guedes da Silva MFC, Baptista PV, Fernandes AR, Pombeiro AJL.  2019.  Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers, 2019. J Inorg Biochem. 200:110811. AbstractWebsite

The syntheses of the heterometallic sodium and potassium-dioxidovanadium 2D polymers, [NaVO2(1kappaNOO';2kappaO"-L)(H2O)]n(1) and [KVO2(1kappaNOO';2kappaO';3kappaO"-L)(EtOH)]n(2) (where the kappa notation indicates the coordinating atoms of the polydentate ligand L) derived from (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H2L) are reported. The polymers were characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction analysis. The antiproliferative potential of 1 and 2 was examined towards four human cancer cell lines (ovarian carcinoma, A2780, colorectal carcinoma, HCT116, prostate carcinoma, PC3 and breast adenocarcinoma, MCF-7cell lines) and normal human fibroblasts. Complex 1 and 2 showed the highest cytotoxic activity against A2780 cell line (IC50 8.2 and 11.3muM, respectively) with 1>2 and an IC50 in the same range as cisplatin (IC50 3.4muM; obtained in the same experimental conditions) but, interestingly, with no cytotoxicity to healthy human fibroblasts for concentrations up to 75muM. This high cytotoxicity of 1 in ovarian cancer cells and its low cytotoxicity in healthy cells demonstrates its potential for further biological studies. Our results suggest that both complexes induce ovarian carcinoma cell death via apoptosis and autophagy, but autophagy is the main biological cause of the reduction of viability observed and that ROS (reactive oxygen species) may play an important role in triggering cell death.

Silva, J, Fernandes AR, Baptista PV.  2014.  Application of Nanotechnology in Drug Delivery. Application of Nanotechnology in Drug Delivery. (Ali Demir Sezer, Ed.)., Rijeka: InTech, Chapters published application_of_nanotechnology_in_drug_delivery.pdf
Veigas, B, Fernandes AR, Baptista PV.  2014.  AuNPs for identification of molecular signatures of resistance. Front Microbiol. 5:455.14veigasfm.pdf